ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsnf Unicode version

Theorem sumsnf 11202
Description: A sum of a singleton is the term. A version of sumsn 11204 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
sumsnf.1  |-  F/_ k B
sumsnf.2  |-  ( k  =  M  ->  A  =  B )
Assertion
Ref Expression
sumsnf  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  B )
Distinct variable groups:    k, M    k, V
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem sumsnf
Dummy variables  m  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2281 . . . . 5  |-  F/_ m A
2 nfcsb1v 3035 . . . . 5  |-  F/_ k [_ m  /  k ]_ A
3 csbeq1a 3012 . . . . 5  |-  ( k  =  m  ->  A  =  [_ m  /  k ]_ A )
41, 2, 3cbvsumi 11155 . . . 4  |-  sum_ k  e.  { M } A  =  sum_ m  e.  { M } [_ m  / 
k ]_ A
5 csbeq1 3006 . . . . 5  |-  ( m  =  ( { <. 1 ,  M >. } `
 n )  ->  [_ m  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A
)
6 1nn 8750 . . . . . 6  |-  1  e.  NN
76a1i 9 . . . . 5  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  NN )
8 simpl 108 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  M  e.  V )
9 f1osng 5411 . . . . . . 7  |-  ( ( 1  e.  NN  /\  M  e.  V )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
106, 8, 9sylancr 410 . . . . . 6  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
11 1z 9099 . . . . . . 7  |-  1  e.  ZZ
12 fzsn 9870 . . . . . . 7  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
13 f1oeq2 5360 . . . . . . 7  |-  ( ( 1 ... 1 )  =  { 1 }  ->  ( { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M }  <->  { <. 1 ,  M >. } : {
1 } -1-1-onto-> { M } ) )
1411, 12, 13mp2b 8 . . . . . 6  |-  ( {
<. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } 
<->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
1510, 14sylibr 133 . . . . 5  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
16 elsni 3545 . . . . . . . 8  |-  ( m  e.  { M }  ->  m  =  M )
1716adantl 275 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  m  =  M )
1817csbeq1d 3010 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  =  [_ M  /  k ]_ A )
19 sumsnf.1 . . . . . . . . . 10  |-  F/_ k B
2019a1i 9 . . . . . . . . 9  |-  ( M  e.  V  ->  F/_ k B )
21 sumsnf.2 . . . . . . . . 9  |-  ( k  =  M  ->  A  =  B )
2220, 21csbiegf 3043 . . . . . . . 8  |-  ( M  e.  V  ->  [_ M  /  k ]_ A  =  B )
2322ad2antrr 479 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ M  /  k ]_ A  =  B )
24 simplr 519 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  B  e.  CC )
2523, 24eqeltrd 2216 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ M  /  k ]_ A  e.  CC )
2618, 25eqeltrd 2216 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  e.  CC )
2722ad2antrr 479 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  [_ M  / 
k ]_ A  =  B )
28 elfz1eq 9839 . . . . . . . . 9  |-  ( n  e.  ( 1 ... 1 )  ->  n  =  1 )
2928fveq2d 5428 . . . . . . . 8  |-  ( n  e.  ( 1 ... 1 )  ->  ( { <. 1 ,  M >. } `  n )  =  ( { <. 1 ,  M >. } `
 1 ) )
30 fvsng 5619 . . . . . . . . 9  |-  ( ( 1  e.  NN  /\  M  e.  V )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
316, 8, 30sylancr 410 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
3229, 31sylan9eqr 2194 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  M >. } `
 n )  =  M )
3332csbeq1d 3010 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  [_ ( {
<. 1 ,  M >. } `  n )  /  k ]_ A  =  [_ M  /  k ]_ A )
3428fveq2d 5428 . . . . . . 7  |-  ( n  e.  ( 1 ... 1 )  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
35 simpr 109 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  B  e.  CC )
36 fvsng 5619 . . . . . . . 8  |-  ( ( 1  e.  NN  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
376, 35, 36sylancr 410 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
3834, 37sylan9eqr 2194 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  =  B )
3927, 33, 383eqtr4rd 2183 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
405, 7, 15, 26, 39fsum3 11180 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ m  e.  { M } [_ m  /  k ]_ A  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ) `
 1 ) )
414, 40syl5eq 2184 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  0 ) ) ) `  1 ) )
42 1zzd 9100 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  ZZ )
43 eqid 2139 . . . . . 6  |-  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) )
44 breq1 3935 . . . . . . 7  |-  ( n  =  u  ->  (
n  <_  1  <->  u  <_  1 ) )
45 fveq2 5424 . . . . . . 7  |-  ( n  =  u  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 u ) )
4644, 45ifbieq1d 3494 . . . . . 6  |-  ( n  =  u  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  0 )  =  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 ) )
47 elnnuz 9381 . . . . . . . 8  |-  ( u  e.  NN  <->  u  e.  ( ZZ>= `  1 )
)
4847biimpri 132 . . . . . . 7  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  NN )
4948adantl 275 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  NN )
50 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  <_  1 )
51 eluzle 9357 . . . . . . . . . . . 12  |-  ( u  e.  ( ZZ>= `  1
)  ->  1  <_  u )
5251ad2antlr 480 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  1  <_  u )
53 eluzelre 9355 . . . . . . . . . . . . 13  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  RR )
5453ad2antlr 480 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  e.  RR )
55 1red 7800 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  1  e.  RR )
5654, 55letri3d 7898 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( u  =  1  <->  ( u  <_  1  /\  1  <_  u ) ) )
5750, 52, 56mpbir2and 928 . . . . . . . . . 10  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  = 
1 )
5857fveq2d 5428 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  =  ( { <. 1 ,  B >. } `  1
) )
5937ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 1 )  =  B )
6058, 59eqtrd 2172 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  =  B )
6135ad2antrr 479 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  B  e.  CC )
6260, 61eqeltrd 2216 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  e.  CC )
63 0cnd 7778 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  <_  1 )  ->  0  e.  CC )
6449nnzd 9191 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  ZZ )
65 1zzd 9100 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  1  e.  ZZ )
66 zdcle 9146 . . . . . . . 8  |-  ( ( u  e.  ZZ  /\  1  e.  ZZ )  -> DECID  u  <_  1 )
6764, 65, 66syl2anc 408 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  -> DECID 
u  <_  1 )
6862, 63, 67ifcldadc 3501 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 )  e.  CC )
6943, 46, 49, 68fvmptd3 5517 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  u )  =  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 ) )
7069, 68eqeltrd 2216 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  u )  e.  CC )
71 addcl 7764 . . . . 5  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  v )  e.  CC )
7271adantl 275 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  +  v )  e.  CC )
7342, 70, 72seq3-1 10257 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) ) `  1
)  =  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ` 
1 ) )
7441, 73eqtrd 2172 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ` 
1 ) )
75 1le1 8353 . . . . . 6  |-  1  <_  1
7675iftruei 3480 . . . . 5  |-  if ( 1  <_  1 , 
( { <. 1 ,  B >. } `  1
) ,  0 )  =  ( { <. 1 ,  B >. } `
 1 )
7776, 37syl5eq 2184 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 )  =  B )
7877, 35eqeltrd 2216 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 )  e.  CC )
79 breq1 3935 . . . . 5  |-  ( n  =  1  ->  (
n  <_  1  <->  1  <_  1 ) )
80 fveq2 5424 . . . . 5  |-  ( n  =  1  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
8179, 80ifbieq1d 3494 . . . 4  |-  ( n  =  1  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  0 )  =  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `  1 ) ,  0 ) )
8281, 43fvmptg 5500 . . 3  |-  ( ( 1  e.  NN  /\  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `
 1 ) ,  0 )  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  1 )  =  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `  1 ) ,  0 ) )
836, 78, 82sylancr 410 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  0 ) ) `
 1 )  =  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 ) )
8474, 83, 773eqtrd 2176 1  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 819    = wceq 1331    e. wcel 1480   F/_wnfc 2268   [_csb 3003   ifcif 3474   {csn 3527   <.cop 3530   class class class wbr 3932    |-> cmpt 3992   -1-1-onto->wf1o 5125   ` cfv 5126  (class class class)co 5777   CCcc 7637   RRcr 7638   0cc0 7639   1c1 7640    + caddc 7642    <_ cle 7820   NNcn 8739   ZZcz 9073   ZZ>=cuz 9345   ...cfz 9814    seqcseq 10242   sum_csu 11146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4046  ax-sep 4049  ax-nul 4057  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-iinf 4505  ax-cnex 7730  ax-resscn 7731  ax-1cn 7732  ax-1re 7733  ax-icn 7734  ax-addcl 7735  ax-addrcl 7736  ax-mulcl 7737  ax-mulrcl 7738  ax-addcom 7739  ax-mulcom 7740  ax-addass 7741  ax-mulass 7742  ax-distr 7743  ax-i2m1 7744  ax-0lt1 7745  ax-1rid 7746  ax-0id 7747  ax-rnegex 7748  ax-precex 7749  ax-cnre 7750  ax-pre-ltirr 7751  ax-pre-ltwlin 7752  ax-pre-lttrn 7753  ax-pre-apti 7754  ax-pre-ltadd 7755  ax-pre-mulgt0 7756  ax-pre-mulext 7757  ax-arch 7758  ax-caucvg 7759
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-int 3775  df-iun 3818  df-br 3933  df-opab 3993  df-mpt 3994  df-tr 4030  df-id 4218  df-po 4221  df-iso 4222  df-iord 4291  df-on 4293  df-ilim 4294  df-suc 4296  df-iom 4508  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-rn 4553  df-res 4554  df-ima 4555  df-iota 5091  df-fun 5128  df-fn 5129  df-f 5130  df-f1 5131  df-fo 5132  df-f1o 5133  df-fv 5134  df-isom 5135  df-riota 5733  df-ov 5780  df-oprab 5781  df-mpo 5782  df-1st 6041  df-2nd 6042  df-recs 6205  df-irdg 6270  df-frec 6291  df-1o 6316  df-oadd 6320  df-er 6432  df-en 6638  df-dom 6639  df-fin 6640  df-pnf 7821  df-mnf 7822  df-xr 7823  df-ltxr 7824  df-le 7825  df-sub 7954  df-neg 7955  df-reap 8356  df-ap 8363  df-div 8452  df-inn 8740  df-2 8798  df-3 8799  df-4 8800  df-n0 8997  df-z 9074  df-uz 9346  df-q 9434  df-rp 9464  df-fz 9815  df-fzo 9944  df-seqfrec 10243  df-exp 10317  df-ihash 10546  df-cj 10638  df-re 10639  df-im 10640  df-rsqrt 10794  df-abs 10795  df-clim 11072  df-sumdc 11147
This theorem is referenced by:  fsumsplitsn  11203  sumsn  11204
  Copyright terms: Public domain W3C validator