ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsnf Unicode version

Theorem sumsnf 11336
Description: A sum of a singleton is the term. A version of sumsn 11338 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
sumsnf.1  |-  F/_ k B
sumsnf.2  |-  ( k  =  M  ->  A  =  B )
Assertion
Ref Expression
sumsnf  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  B )
Distinct variable groups:    k, M    k, V
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem sumsnf
Dummy variables  m  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2306 . . . . 5  |-  F/_ m A
2 nfcsb1v 3073 . . . . 5  |-  F/_ k [_ m  /  k ]_ A
3 csbeq1a 3049 . . . . 5  |-  ( k  =  m  ->  A  =  [_ m  /  k ]_ A )
41, 2, 3cbvsumi 11289 . . . 4  |-  sum_ k  e.  { M } A  =  sum_ m  e.  { M } [_ m  / 
k ]_ A
5 csbeq1 3043 . . . . 5  |-  ( m  =  ( { <. 1 ,  M >. } `
 n )  ->  [_ m  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A
)
6 1nn 8859 . . . . . 6  |-  1  e.  NN
76a1i 9 . . . . 5  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  NN )
8 simpl 108 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  M  e.  V )
9 f1osng 5467 . . . . . . 7  |-  ( ( 1  e.  NN  /\  M  e.  V )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
106, 8, 9sylancr 411 . . . . . 6  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
11 1z 9208 . . . . . . 7  |-  1  e.  ZZ
12 fzsn 9991 . . . . . . 7  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
13 f1oeq2 5416 . . . . . . 7  |-  ( ( 1 ... 1 )  =  { 1 }  ->  ( { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M }  <->  { <. 1 ,  M >. } : {
1 } -1-1-onto-> { M } ) )
1411, 12, 13mp2b 8 . . . . . 6  |-  ( {
<. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } 
<->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
1510, 14sylibr 133 . . . . 5  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
16 elsni 3588 . . . . . . . 8  |-  ( m  e.  { M }  ->  m  =  M )
1716adantl 275 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  m  =  M )
1817csbeq1d 3047 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  =  [_ M  /  k ]_ A )
19 sumsnf.1 . . . . . . . . . 10  |-  F/_ k B
2019a1i 9 . . . . . . . . 9  |-  ( M  e.  V  ->  F/_ k B )
21 sumsnf.2 . . . . . . . . 9  |-  ( k  =  M  ->  A  =  B )
2220, 21csbiegf 3083 . . . . . . . 8  |-  ( M  e.  V  ->  [_ M  /  k ]_ A  =  B )
2322ad2antrr 480 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ M  /  k ]_ A  =  B )
24 simplr 520 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  B  e.  CC )
2523, 24eqeltrd 2241 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ M  /  k ]_ A  e.  CC )
2618, 25eqeltrd 2241 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  e.  CC )
2722ad2antrr 480 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  [_ M  / 
k ]_ A  =  B )
28 elfz1eq 9960 . . . . . . . . 9  |-  ( n  e.  ( 1 ... 1 )  ->  n  =  1 )
2928fveq2d 5484 . . . . . . . 8  |-  ( n  e.  ( 1 ... 1 )  ->  ( { <. 1 ,  M >. } `  n )  =  ( { <. 1 ,  M >. } `
 1 ) )
30 fvsng 5675 . . . . . . . . 9  |-  ( ( 1  e.  NN  /\  M  e.  V )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
316, 8, 30sylancr 411 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
3229, 31sylan9eqr 2219 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  M >. } `
 n )  =  M )
3332csbeq1d 3047 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  [_ ( {
<. 1 ,  M >. } `  n )  /  k ]_ A  =  [_ M  /  k ]_ A )
3428fveq2d 5484 . . . . . . 7  |-  ( n  e.  ( 1 ... 1 )  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
35 simpr 109 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  B  e.  CC )
36 fvsng 5675 . . . . . . . 8  |-  ( ( 1  e.  NN  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
376, 35, 36sylancr 411 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
3834, 37sylan9eqr 2219 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  =  B )
3927, 33, 383eqtr4rd 2208 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
405, 7, 15, 26, 39fsum3 11314 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ m  e.  { M } [_ m  /  k ]_ A  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ) `
 1 ) )
414, 40syl5eq 2209 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  0 ) ) ) `  1 ) )
42 1zzd 9209 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  ZZ )
43 eqid 2164 . . . . . 6  |-  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) )
44 breq1 3979 . . . . . . 7  |-  ( n  =  u  ->  (
n  <_  1  <->  u  <_  1 ) )
45 fveq2 5480 . . . . . . 7  |-  ( n  =  u  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 u ) )
4644, 45ifbieq1d 3537 . . . . . 6  |-  ( n  =  u  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  0 )  =  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 ) )
47 elnnuz 9493 . . . . . . . 8  |-  ( u  e.  NN  <->  u  e.  ( ZZ>= `  1 )
)
4847biimpri 132 . . . . . . 7  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  NN )
4948adantl 275 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  NN )
50 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  <_  1 )
51 eluzle 9469 . . . . . . . . . . . 12  |-  ( u  e.  ( ZZ>= `  1
)  ->  1  <_  u )
5251ad2antlr 481 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  1  <_  u )
53 eluzelre 9467 . . . . . . . . . . . . 13  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  RR )
5453ad2antlr 481 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  e.  RR )
55 1red 7905 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  1  e.  RR )
5654, 55letri3d 8005 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( u  =  1  <->  ( u  <_  1  /\  1  <_  u ) ) )
5750, 52, 56mpbir2and 933 . . . . . . . . . 10  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  = 
1 )
5857fveq2d 5484 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  =  ( { <. 1 ,  B >. } `  1
) )
5937ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 1 )  =  B )
6058, 59eqtrd 2197 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  =  B )
6135ad2antrr 480 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  B  e.  CC )
6260, 61eqeltrd 2241 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  e.  CC )
63 0cnd 7883 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  <_  1 )  ->  0  e.  CC )
6449nnzd 9303 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  ZZ )
65 1zzd 9209 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  1  e.  ZZ )
66 zdcle 9258 . . . . . . . 8  |-  ( ( u  e.  ZZ  /\  1  e.  ZZ )  -> DECID  u  <_  1 )
6764, 65, 66syl2anc 409 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  -> DECID 
u  <_  1 )
6862, 63, 67ifcldadc 3544 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 )  e.  CC )
6943, 46, 49, 68fvmptd3 5573 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  u )  =  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 ) )
7069, 68eqeltrd 2241 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  u )  e.  CC )
71 addcl 7869 . . . . 5  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  v )  e.  CC )
7271adantl 275 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  +  v )  e.  CC )
7342, 70, 72seq3-1 10385 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) ) `  1
)  =  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ` 
1 ) )
7441, 73eqtrd 2197 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ` 
1 ) )
75 1le1 8461 . . . . . 6  |-  1  <_  1
7675iftruei 3521 . . . . 5  |-  if ( 1  <_  1 , 
( { <. 1 ,  B >. } `  1
) ,  0 )  =  ( { <. 1 ,  B >. } `
 1 )
7776, 37syl5eq 2209 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 )  =  B )
7877, 35eqeltrd 2241 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 )  e.  CC )
79 breq1 3979 . . . . 5  |-  ( n  =  1  ->  (
n  <_  1  <->  1  <_  1 ) )
80 fveq2 5480 . . . . 5  |-  ( n  =  1  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
8179, 80ifbieq1d 3537 . . . 4  |-  ( n  =  1  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  0 )  =  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `  1 ) ,  0 ) )
8281, 43fvmptg 5556 . . 3  |-  ( ( 1  e.  NN  /\  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `
 1 ) ,  0 )  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  1 )  =  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `  1 ) ,  0 ) )
836, 78, 82sylancr 411 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  0 ) ) `
 1 )  =  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 ) )
8474, 83, 773eqtrd 2201 1  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    = wceq 1342    e. wcel 2135   F/_wnfc 2293   [_csb 3040   ifcif 3515   {csn 3570   <.cop 3573   class class class wbr 3976    |-> cmpt 4037   -1-1-onto->wf1o 5181   ` cfv 5182  (class class class)co 5836   CCcc 7742   RRcr 7743   0cc0 7744   1c1 7745    + caddc 7747    <_ cle 7925   NNcn 8848   ZZcz 9182   ZZ>=cuz 9457   ...cfz 9935    seqcseq 10370   sum_csu 11280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-frec 6350  df-1o 6375  df-oadd 6379  df-er 6492  df-en 6698  df-dom 6699  df-fin 6700  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fz 9936  df-fzo 10068  df-seqfrec 10371  df-exp 10445  df-ihash 10678  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-clim 11206  df-sumdc 11281
This theorem is referenced by:  fsumsplitsn  11337  sumsn  11338
  Copyright terms: Public domain W3C validator