ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsnf Unicode version

Theorem sumsnf 11920
Description: A sum of a singleton is the term. A version of sumsn 11922 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
sumsnf.1  |-  F/_ k B
sumsnf.2  |-  ( k  =  M  ->  A  =  B )
Assertion
Ref Expression
sumsnf  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  B )
Distinct variable groups:    k, M    k, V
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem sumsnf
Dummy variables  m  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2372 . . . . 5  |-  F/_ m A
2 nfcsb1v 3157 . . . . 5  |-  F/_ k [_ m  /  k ]_ A
3 csbeq1a 3133 . . . . 5  |-  ( k  =  m  ->  A  =  [_ m  /  k ]_ A )
41, 2, 3cbvsumi 11873 . . . 4  |-  sum_ k  e.  { M } A  =  sum_ m  e.  { M } [_ m  / 
k ]_ A
5 csbeq1 3127 . . . . 5  |-  ( m  =  ( { <. 1 ,  M >. } `
 n )  ->  [_ m  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A
)
6 1nn 9121 . . . . . 6  |-  1  e.  NN
76a1i 9 . . . . 5  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  NN )
8 simpl 109 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  M  e.  V )
9 f1osng 5614 . . . . . . 7  |-  ( ( 1  e.  NN  /\  M  e.  V )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
106, 8, 9sylancr 414 . . . . . 6  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
11 1z 9472 . . . . . . 7  |-  1  e.  ZZ
12 fzsn 10262 . . . . . . 7  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
13 f1oeq2 5561 . . . . . . 7  |-  ( ( 1 ... 1 )  =  { 1 }  ->  ( { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M }  <->  { <. 1 ,  M >. } : {
1 } -1-1-onto-> { M } ) )
1411, 12, 13mp2b 8 . . . . . 6  |-  ( {
<. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } 
<->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
1510, 14sylibr 134 . . . . 5  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
16 elsni 3684 . . . . . . . 8  |-  ( m  e.  { M }  ->  m  =  M )
1716adantl 277 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  m  =  M )
1817csbeq1d 3131 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  =  [_ M  /  k ]_ A )
19 sumsnf.1 . . . . . . . . . 10  |-  F/_ k B
2019a1i 9 . . . . . . . . 9  |-  ( M  e.  V  ->  F/_ k B )
21 sumsnf.2 . . . . . . . . 9  |-  ( k  =  M  ->  A  =  B )
2220, 21csbiegf 3168 . . . . . . . 8  |-  ( M  e.  V  ->  [_ M  /  k ]_ A  =  B )
2322ad2antrr 488 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ M  /  k ]_ A  =  B )
24 simplr 528 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  B  e.  CC )
2523, 24eqeltrd 2306 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ M  /  k ]_ A  e.  CC )
2618, 25eqeltrd 2306 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  e.  CC )
2722ad2antrr 488 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  [_ M  / 
k ]_ A  =  B )
28 elfz1eq 10231 . . . . . . . . 9  |-  ( n  e.  ( 1 ... 1 )  ->  n  =  1 )
2928fveq2d 5631 . . . . . . . 8  |-  ( n  e.  ( 1 ... 1 )  ->  ( { <. 1 ,  M >. } `  n )  =  ( { <. 1 ,  M >. } `
 1 ) )
30 fvsng 5835 . . . . . . . . 9  |-  ( ( 1  e.  NN  /\  M  e.  V )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
316, 8, 30sylancr 414 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
3229, 31sylan9eqr 2284 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  M >. } `
 n )  =  M )
3332csbeq1d 3131 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  [_ ( {
<. 1 ,  M >. } `  n )  /  k ]_ A  =  [_ M  /  k ]_ A )
3428fveq2d 5631 . . . . . . 7  |-  ( n  e.  ( 1 ... 1 )  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
35 simpr 110 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  B  e.  CC )
36 fvsng 5835 . . . . . . . 8  |-  ( ( 1  e.  NN  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
376, 35, 36sylancr 414 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
3834, 37sylan9eqr 2284 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  =  B )
3927, 33, 383eqtr4rd 2273 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
405, 7, 15, 26, 39fsum3 11898 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ m  e.  { M } [_ m  /  k ]_ A  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ) `
 1 ) )
414, 40eqtrid 2274 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  0 ) ) ) `  1 ) )
42 1zzd 9473 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  ZZ )
43 eqid 2229 . . . . . 6  |-  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) )
44 breq1 4086 . . . . . . 7  |-  ( n  =  u  ->  (
n  <_  1  <->  u  <_  1 ) )
45 fveq2 5627 . . . . . . 7  |-  ( n  =  u  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 u ) )
4644, 45ifbieq1d 3625 . . . . . 6  |-  ( n  =  u  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  0 )  =  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 ) )
47 elnnuz 9759 . . . . . . . 8  |-  ( u  e.  NN  <->  u  e.  ( ZZ>= `  1 )
)
4847biimpri 133 . . . . . . 7  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  NN )
4948adantl 277 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  NN )
50 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  <_  1 )
51 eluzle 9734 . . . . . . . . . . . 12  |-  ( u  e.  ( ZZ>= `  1
)  ->  1  <_  u )
5251ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  1  <_  u )
53 eluzelre 9732 . . . . . . . . . . . . 13  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  RR )
5453ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  e.  RR )
55 1red 8161 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  1  e.  RR )
5654, 55letri3d 8262 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( u  =  1  <->  ( u  <_  1  /\  1  <_  u ) ) )
5750, 52, 56mpbir2and 950 . . . . . . . . . 10  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  = 
1 )
5857fveq2d 5631 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  =  ( { <. 1 ,  B >. } `  1
) )
5937ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 1 )  =  B )
6058, 59eqtrd 2262 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  =  B )
6135ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  B  e.  CC )
6260, 61eqeltrd 2306 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  e.  CC )
63 0cnd 8139 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  <_  1 )  ->  0  e.  CC )
6449nnzd 9568 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  ZZ )
65 1zzd 9473 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  1  e.  ZZ )
66 zdcle 9523 . . . . . . . 8  |-  ( ( u  e.  ZZ  /\  1  e.  ZZ )  -> DECID  u  <_  1 )
6764, 65, 66syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  -> DECID 
u  <_  1 )
6862, 63, 67ifcldadc 3632 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 )  e.  CC )
6943, 46, 49, 68fvmptd3 5728 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  u )  =  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 ) )
7069, 68eqeltrd 2306 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  u )  e.  CC )
71 addcl 8124 . . . . 5  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  v )  e.  CC )
7271adantl 277 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  +  v )  e.  CC )
7342, 70, 72seq3-1 10684 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) ) `  1
)  =  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ` 
1 ) )
7441, 73eqtrd 2262 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ` 
1 ) )
75 1le1 8719 . . . . . 6  |-  1  <_  1
7675iftruei 3608 . . . . 5  |-  if ( 1  <_  1 , 
( { <. 1 ,  B >. } `  1
) ,  0 )  =  ( { <. 1 ,  B >. } `
 1 )
7776, 37eqtrid 2274 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 )  =  B )
7877, 35eqeltrd 2306 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 )  e.  CC )
79 breq1 4086 . . . . 5  |-  ( n  =  1  ->  (
n  <_  1  <->  1  <_  1 ) )
80 fveq2 5627 . . . . 5  |-  ( n  =  1  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
8179, 80ifbieq1d 3625 . . . 4  |-  ( n  =  1  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  0 )  =  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `  1 ) ,  0 ) )
8281, 43fvmptg 5710 . . 3  |-  ( ( 1  e.  NN  /\  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `
 1 ) ,  0 )  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  1 )  =  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `  1 ) ,  0 ) )
836, 78, 82sylancr 414 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  0 ) ) `
 1 )  =  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 ) )
8474, 83, 773eqtrd 2266 1  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395    e. wcel 2200   F/_wnfc 2359   [_csb 3124   ifcif 3602   {csn 3666   <.cop 3669   class class class wbr 4083    |-> cmpt 4145   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999   1c1 8000    + caddc 8002    <_ cle 8182   NNcn 9110   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204    seqcseq 10669   sum_csu 11864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865
This theorem is referenced by:  fsumsplitsn  11921  sumsn  11922
  Copyright terms: Public domain W3C validator