ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsnf Unicode version

Theorem sumsnf 11401
Description: A sum of a singleton is the term. A version of sumsn 11403 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
sumsnf.1  |-  F/_ k B
sumsnf.2  |-  ( k  =  M  ->  A  =  B )
Assertion
Ref Expression
sumsnf  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  B )
Distinct variable groups:    k, M    k, V
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem sumsnf
Dummy variables  m  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2319 . . . . 5  |-  F/_ m A
2 nfcsb1v 3090 . . . . 5  |-  F/_ k [_ m  /  k ]_ A
3 csbeq1a 3066 . . . . 5  |-  ( k  =  m  ->  A  =  [_ m  /  k ]_ A )
41, 2, 3cbvsumi 11354 . . . 4  |-  sum_ k  e.  { M } A  =  sum_ m  e.  { M } [_ m  / 
k ]_ A
5 csbeq1 3060 . . . . 5  |-  ( m  =  ( { <. 1 ,  M >. } `
 n )  ->  [_ m  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A
)
6 1nn 8919 . . . . . 6  |-  1  e.  NN
76a1i 9 . . . . 5  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  NN )
8 simpl 109 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  M  e.  V )
9 f1osng 5498 . . . . . . 7  |-  ( ( 1  e.  NN  /\  M  e.  V )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
106, 8, 9sylancr 414 . . . . . 6  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
11 1z 9268 . . . . . . 7  |-  1  e.  ZZ
12 fzsn 10052 . . . . . . 7  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
13 f1oeq2 5446 . . . . . . 7  |-  ( ( 1 ... 1 )  =  { 1 }  ->  ( { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M }  <->  { <. 1 ,  M >. } : {
1 } -1-1-onto-> { M } ) )
1411, 12, 13mp2b 8 . . . . . 6  |-  ( {
<. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } 
<->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
1510, 14sylibr 134 . . . . 5  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
16 elsni 3609 . . . . . . . 8  |-  ( m  e.  { M }  ->  m  =  M )
1716adantl 277 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  m  =  M )
1817csbeq1d 3064 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  =  [_ M  /  k ]_ A )
19 sumsnf.1 . . . . . . . . . 10  |-  F/_ k B
2019a1i 9 . . . . . . . . 9  |-  ( M  e.  V  ->  F/_ k B )
21 sumsnf.2 . . . . . . . . 9  |-  ( k  =  M  ->  A  =  B )
2220, 21csbiegf 3100 . . . . . . . 8  |-  ( M  e.  V  ->  [_ M  /  k ]_ A  =  B )
2322ad2antrr 488 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ M  /  k ]_ A  =  B )
24 simplr 528 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  B  e.  CC )
2523, 24eqeltrd 2254 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ M  /  k ]_ A  e.  CC )
2618, 25eqeltrd 2254 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  e.  CC )
2722ad2antrr 488 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  [_ M  / 
k ]_ A  =  B )
28 elfz1eq 10021 . . . . . . . . 9  |-  ( n  e.  ( 1 ... 1 )  ->  n  =  1 )
2928fveq2d 5515 . . . . . . . 8  |-  ( n  e.  ( 1 ... 1 )  ->  ( { <. 1 ,  M >. } `  n )  =  ( { <. 1 ,  M >. } `
 1 ) )
30 fvsng 5708 . . . . . . . . 9  |-  ( ( 1  e.  NN  /\  M  e.  V )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
316, 8, 30sylancr 414 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
3229, 31sylan9eqr 2232 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  M >. } `
 n )  =  M )
3332csbeq1d 3064 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  [_ ( {
<. 1 ,  M >. } `  n )  /  k ]_ A  =  [_ M  /  k ]_ A )
3428fveq2d 5515 . . . . . . 7  |-  ( n  e.  ( 1 ... 1 )  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
35 simpr 110 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  B  e.  CC )
36 fvsng 5708 . . . . . . . 8  |-  ( ( 1  e.  NN  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
376, 35, 36sylancr 414 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
3834, 37sylan9eqr 2232 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  =  B )
3927, 33, 383eqtr4rd 2221 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
405, 7, 15, 26, 39fsum3 11379 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ m  e.  { M } [_ m  /  k ]_ A  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ) `
 1 ) )
414, 40eqtrid 2222 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  0 ) ) ) `  1 ) )
42 1zzd 9269 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  ZZ )
43 eqid 2177 . . . . . 6  |-  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) )
44 breq1 4003 . . . . . . 7  |-  ( n  =  u  ->  (
n  <_  1  <->  u  <_  1 ) )
45 fveq2 5511 . . . . . . 7  |-  ( n  =  u  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 u ) )
4644, 45ifbieq1d 3556 . . . . . 6  |-  ( n  =  u  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  0 )  =  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 ) )
47 elnnuz 9553 . . . . . . . 8  |-  ( u  e.  NN  <->  u  e.  ( ZZ>= `  1 )
)
4847biimpri 133 . . . . . . 7  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  NN )
4948adantl 277 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  NN )
50 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  <_  1 )
51 eluzle 9529 . . . . . . . . . . . 12  |-  ( u  e.  ( ZZ>= `  1
)  ->  1  <_  u )
5251ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  1  <_  u )
53 eluzelre 9527 . . . . . . . . . . . . 13  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  RR )
5453ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  e.  RR )
55 1red 7963 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  1  e.  RR )
5654, 55letri3d 8063 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( u  =  1  <->  ( u  <_  1  /\  1  <_  u ) ) )
5750, 52, 56mpbir2and 944 . . . . . . . . . 10  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  = 
1 )
5857fveq2d 5515 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  =  ( { <. 1 ,  B >. } `  1
) )
5937ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 1 )  =  B )
6058, 59eqtrd 2210 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  =  B )
6135ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  B  e.  CC )
6260, 61eqeltrd 2254 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  e.  CC )
63 0cnd 7941 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  <_  1 )  ->  0  e.  CC )
6449nnzd 9363 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  ZZ )
65 1zzd 9269 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  1  e.  ZZ )
66 zdcle 9318 . . . . . . . 8  |-  ( ( u  e.  ZZ  /\  1  e.  ZZ )  -> DECID  u  <_  1 )
6764, 65, 66syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  -> DECID 
u  <_  1 )
6862, 63, 67ifcldadc 3563 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 )  e.  CC )
6943, 46, 49, 68fvmptd3 5605 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  u )  =  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 ) )
7069, 68eqeltrd 2254 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  u )  e.  CC )
71 addcl 7927 . . . . 5  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  v )  e.  CC )
7271adantl 277 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  +  v )  e.  CC )
7342, 70, 72seq3-1 10446 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) ) `  1
)  =  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ` 
1 ) )
7441, 73eqtrd 2210 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ` 
1 ) )
75 1le1 8519 . . . . . 6  |-  1  <_  1
7675iftruei 3540 . . . . 5  |-  if ( 1  <_  1 , 
( { <. 1 ,  B >. } `  1
) ,  0 )  =  ( { <. 1 ,  B >. } `
 1 )
7776, 37eqtrid 2222 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 )  =  B )
7877, 35eqeltrd 2254 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 )  e.  CC )
79 breq1 4003 . . . . 5  |-  ( n  =  1  ->  (
n  <_  1  <->  1  <_  1 ) )
80 fveq2 5511 . . . . 5  |-  ( n  =  1  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
8179, 80ifbieq1d 3556 . . . 4  |-  ( n  =  1  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  0 )  =  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `  1 ) ,  0 ) )
8281, 43fvmptg 5588 . . 3  |-  ( ( 1  e.  NN  /\  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `
 1 ) ,  0 )  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  1 )  =  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `  1 ) ,  0 ) )
836, 78, 82sylancr 414 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  0 ) ) `
 1 )  =  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 ) )
8474, 83, 773eqtrd 2214 1  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 834    = wceq 1353    e. wcel 2148   F/_wnfc 2306   [_csb 3057   ifcif 3534   {csn 3591   <.cop 3594   class class class wbr 4000    |-> cmpt 4061   -1-1-onto->wf1o 5211   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    <_ cle 7983   NNcn 8908   ZZcz 9242   ZZ>=cuz 9517   ...cfz 9995    seqcseq 10431   sum_csu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  fsumsplitsn  11402  sumsn  11403
  Copyright terms: Public domain W3C validator