ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodsnf Unicode version

Theorem prodsnf 11602
Description: A product of a singleton is the term. A version of prodsn 11603 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
prodsnf.1  |-  F/_ k B
prodsnf.2  |-  ( k  =  M  ->  A  =  B )
Assertion
Ref Expression
prodsnf  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
Distinct variable groups:    k, M    k, V
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem prodsnf
Dummy variables  m  n  j  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2319 . . . 4  |-  F/_ m A
2 nfcsb1v 3092 . . . 4  |-  F/_ k [_ m  /  k ]_ A
3 csbeq1a 3068 . . . 4  |-  ( k  =  m  ->  A  =  [_ m  /  k ]_ A )
41, 2, 3cbvprodi 11570 . . 3  |-  prod_ k  e.  { M } A  =  prod_ m  e.  { M } [_ m  / 
k ]_ A
5 csbeq1 3062 . . . 4  |-  ( m  =  ( { <. 1 ,  M >. } `
 n )  ->  [_ m  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A
)
6 1nn 8932 . . . . 5  |-  1  e.  NN
76a1i 9 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  NN )
8 1z 9281 . . . . . 6  |-  1  e.  ZZ
9 f1osng 5504 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
10 fzsn 10068 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
118, 10ax-mp 5 . . . . . . . 8  |-  ( 1 ... 1 )  =  { 1 }
12 f1oeq2 5452 . . . . . . . 8  |-  ( ( 1 ... 1 )  =  { 1 }  ->  ( { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M }  <->  { <. 1 ,  M >. } : {
1 } -1-1-onto-> { M } ) )
1311, 12ax-mp 5 . . . . . . 7  |-  ( {
<. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } 
<->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
149, 13sylibr 134 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
158, 14mpan 424 . . . . 5  |-  ( M  e.  V  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
1615adantr 276 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
17 velsn 3611 . . . . . 6  |-  ( m  e.  { M }  <->  m  =  M )
18 csbeq1 3062 . . . . . . 7  |-  ( m  =  M  ->  [_ m  /  k ]_ A  =  [_ M  /  k ]_ A )
19 prodsnf.1 . . . . . . . . . 10  |-  F/_ k B
2019a1i 9 . . . . . . . . 9  |-  ( M  e.  V  ->  F/_ k B )
21 prodsnf.2 . . . . . . . . 9  |-  ( k  =  M  ->  A  =  B )
2220, 21csbiegf 3102 . . . . . . . 8  |-  ( M  e.  V  ->  [_ M  /  k ]_ A  =  B )
2322adantr 276 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  [_ M  /  k ]_ A  =  B
)
2418, 23sylan9eqr 2232 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  =  M )  ->  [_ m  / 
k ]_ A  =  B )
2517, 24sylan2b 287 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  =  B )
26 simplr 528 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  B  e.  CC )
2725, 26eqeltrd 2254 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  e.  CC )
2811eleq2i 2244 . . . . . 6  |-  ( n  e.  ( 1 ... 1 )  <->  n  e.  { 1 } )
29 velsn 3611 . . . . . 6  |-  ( n  e.  { 1 }  <-> 
n  =  1 )
3028, 29bitri 184 . . . . 5  |-  ( n  e.  ( 1 ... 1 )  <->  n  = 
1 )
31 fvsng 5714 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
328, 31mpan 424 . . . . . . . . . 10  |-  ( M  e.  V  ->  ( { <. 1 ,  M >. } `  1 )  =  M )
3332adantr 276 . . . . . . . . 9  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
3433csbeq1d 3066 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  [_ ( { <. 1 ,  M >. } `
 1 )  / 
k ]_ A  =  [_ M  /  k ]_ A
)
35 simpr 110 . . . . . . . . 9  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  B  e.  CC )
36 fvsng 5714 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
378, 35, 36sylancr 414 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
3823, 34, 373eqtr4rd 2221 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  [_ ( { <. 1 ,  M >. } `  1 )  /  k ]_ A
)
39 fveq2 5517 . . . . . . . 8  |-  ( n  =  1  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
40 fveq2 5517 . . . . . . . . 9  |-  ( n  =  1  ->  ( { <. 1 ,  M >. } `  n )  =  ( { <. 1 ,  M >. } `
 1 ) )
4140csbeq1d 3066 . . . . . . . 8  |-  ( n  =  1  ->  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `
 1 )  / 
k ]_ A )
4239, 41eqeq12d 2192 . . . . . . 7  |-  ( n  =  1  ->  (
( { <. 1 ,  B >. } `  n
)  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A  <->  ( { <. 1 ,  B >. } `  1 )  =  [_ ( {
<. 1 ,  M >. } `  1 )  /  k ]_ A
) )
4338, 42syl5ibrcom 157 . . . . . 6  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( n  =  1  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A ) )
4443imp 124 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  =  1 )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
4530, 44sylan2b 287 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
465, 7, 16, 27, 45fprodseq 11593 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ m  e.  { M } [_ m  / 
k ]_ A  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) ) `  1 ) )
474, 46eqtrid 2222 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) ) `  1 ) )
48 1zzd 9282 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  ZZ )
49 eqid 2177 . . . . . 6  |-  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) )
50 breq1 4008 . . . . . . 7  |-  ( n  =  j  ->  (
n  <_  1  <->  j  <_  1 ) )
51 fveq2 5517 . . . . . . 7  |-  ( n  =  j  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 j ) )
5250, 51ifbieq1d 3558 . . . . . 6  |-  ( n  =  j  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  1 )  =  if ( j  <_  1 ,  ( { <. 1 ,  B >. } `  j ) ,  1 ) )
53 elnnuz 9566 . . . . . . . 8  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
5453biimpri 133 . . . . . . 7  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
5554adantl 277 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  j  e.  NN )
56 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  <_  1 )
57 eluzle 9542 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  1
)  ->  1  <_  j )
5857ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  1  <_  j )
5954nnzd 9376 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  ZZ )
6059ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  e.  ZZ )
6160zred 9377 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  e.  RR )
62 1red 7974 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  1  e.  RR )
6361, 62letri3d 8075 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( j  =  1  <->  ( j  <_  1  /\  1  <_ 
j ) ) )
6456, 58, 63mpbir2and 944 . . . . . . . . . 10  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  = 
1 )
6564fveq2d 5521 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 j )  =  ( { <. 1 ,  B >. } `  1
) )
6637ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 1 )  =  B )
6765, 66eqtrd 2210 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 j )  =  B )
6835ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  B  e.  CC )
6967, 68eqeltrd 2254 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 j )  e.  CC )
70 1cnd 7975 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  -.  j  <_  1 )  ->  1  e.  CC )
7155nnzd 9376 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  j  e.  ZZ )
72 1zzd 9282 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  1  e.  ZZ )
73 zdcle 9331 . . . . . . . 8  |-  ( ( j  e.  ZZ  /\  1  e.  ZZ )  -> DECID  j  <_  1 )
7471, 72, 73syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  -> DECID 
j  <_  1 )
7569, 70, 74ifcldadc 3565 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  if ( j  <_  1 ,  ( { <. 1 ,  B >. } `  j ) ,  1 )  e.  CC )
7649, 52, 55, 75fvmptd3 5611 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) `  j )  =  if ( j  <_  1 ,  ( { <. 1 ,  B >. } `  j ) ,  1 ) )
7776, 75eqeltrd 2254 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) `  j )  e.  CC )
78 mulcl 7940 . . . . 5  |-  ( ( j  e.  CC  /\  q  e.  CC )  ->  ( j  x.  q
)  e.  CC )
7978adantl 277 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  ( j  e.  CC  /\  q  e.  CC ) )  -> 
( j  x.  q
)  e.  CC )
8048, 77, 79seq3-1 10462 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) ) `  1
)  =  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  1 ) ) ` 
1 ) )
81 breq1 4008 . . . . . 6  |-  ( n  =  1  ->  (
n  <_  1  <->  1  <_  1 ) )
8281, 39ifbieq1d 3558 . . . . 5  |-  ( n  =  1  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  1 )  =  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `  1 ) ,  1 ) )
83 1le1 8531 . . . . . . . 8  |-  1  <_  1
8483iftruei 3542 . . . . . . 7  |-  if ( 1  <_  1 , 
( { <. 1 ,  B >. } `  1
) ,  1 )  =  ( { <. 1 ,  B >. } `
 1 )
8584, 37eqtrid 2222 . . . . . 6  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  1 )  =  B )
8685, 35eqeltrd 2254 . . . . 5  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  1 )  e.  CC )
8749, 82, 7, 86fvmptd3 5611 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) `
 1 )  =  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  1 ) )
8887, 85eqtrd 2210 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) `
 1 )  =  B )
8980, 88eqtrd 2210 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) ) `  1
)  =  B )
9047, 89eqtrd 2210 1  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 834    = wceq 1353    e. wcel 2148   F/_wnfc 2306   [_csb 3059   ifcif 3536   {csn 3594   <.cop 3597   class class class wbr 4005    |-> cmpt 4066   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5877   CCcc 7811   1c1 7814    x. cmul 7818    <_ cle 7995   NNcn 8921   ZZcz 9255   ZZ>=cuz 9530   ...cfz 10010    seqcseq 10447   prod_cprod 11560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-proddc 11561
This theorem is referenced by:  prodsn  11603  fprodunsn  11614  fprodsplitsn  11643
  Copyright terms: Public domain W3C validator