| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodsnf | Unicode version | ||
| Description: A product of a singleton is the term. A version of prodsn 12019 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| prodsnf.1 |
|
| prodsnf.2 |
|
| Ref | Expression |
|---|---|
| prodsnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 |
. . . 4
| |
| 2 | nfcsb1v 3134 |
. . . 4
| |
| 3 | csbeq1a 3110 |
. . . 4
| |
| 4 | 1, 2, 3 | cbvprodi 11986 |
. . 3
|
| 5 | csbeq1 3104 |
. . . 4
| |
| 6 | 1nn 9082 |
. . . . 5
| |
| 7 | 6 | a1i 9 |
. . . 4
|
| 8 | 1z 9433 |
. . . . . 6
| |
| 9 | f1osng 5586 |
. . . . . . 7
| |
| 10 | fzsn 10223 |
. . . . . . . . 9
| |
| 11 | 8, 10 | ax-mp 5 |
. . . . . . . 8
|
| 12 | f1oeq2 5533 |
. . . . . . . 8
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . 7
|
| 14 | 9, 13 | sylibr 134 |
. . . . . 6
|
| 15 | 8, 14 | mpan 424 |
. . . . 5
|
| 16 | 15 | adantr 276 |
. . . 4
|
| 17 | velsn 3660 |
. . . . . 6
| |
| 18 | csbeq1 3104 |
. . . . . . 7
| |
| 19 | prodsnf.1 |
. . . . . . . . . 10
| |
| 20 | 19 | a1i 9 |
. . . . . . . . 9
|
| 21 | prodsnf.2 |
. . . . . . . . 9
| |
| 22 | 20, 21 | csbiegf 3145 |
. . . . . . . 8
|
| 23 | 22 | adantr 276 |
. . . . . . 7
|
| 24 | 18, 23 | sylan9eqr 2262 |
. . . . . 6
|
| 25 | 17, 24 | sylan2b 287 |
. . . . 5
|
| 26 | simplr 528 |
. . . . 5
| |
| 27 | 25, 26 | eqeltrd 2284 |
. . . 4
|
| 28 | 11 | eleq2i 2274 |
. . . . . 6
|
| 29 | velsn 3660 |
. . . . . 6
| |
| 30 | 28, 29 | bitri 184 |
. . . . 5
|
| 31 | fvsng 5803 |
. . . . . . . . . . 11
| |
| 32 | 8, 31 | mpan 424 |
. . . . . . . . . 10
|
| 33 | 32 | adantr 276 |
. . . . . . . . 9
|
| 34 | 33 | csbeq1d 3108 |
. . . . . . . 8
|
| 35 | simpr 110 |
. . . . . . . . 9
| |
| 36 | fvsng 5803 |
. . . . . . . . 9
| |
| 37 | 8, 35, 36 | sylancr 414 |
. . . . . . . 8
|
| 38 | 23, 34, 37 | 3eqtr4rd 2251 |
. . . . . . 7
|
| 39 | fveq2 5599 |
. . . . . . . 8
| |
| 40 | fveq2 5599 |
. . . . . . . . 9
| |
| 41 | 40 | csbeq1d 3108 |
. . . . . . . 8
|
| 42 | 39, 41 | eqeq12d 2222 |
. . . . . . 7
|
| 43 | 38, 42 | syl5ibrcom 157 |
. . . . . 6
|
| 44 | 43 | imp 124 |
. . . . 5
|
| 45 | 30, 44 | sylan2b 287 |
. . . 4
|
| 46 | 5, 7, 16, 27, 45 | fprodseq 12009 |
. . 3
|
| 47 | 4, 46 | eqtrid 2252 |
. 2
|
| 48 | 1zzd 9434 |
. . . 4
| |
| 49 | eqid 2207 |
. . . . . 6
| |
| 50 | breq1 4062 |
. . . . . . 7
| |
| 51 | fveq2 5599 |
. . . . . . 7
| |
| 52 | 50, 51 | ifbieq1d 3602 |
. . . . . 6
|
| 53 | elnnuz 9720 |
. . . . . . . 8
| |
| 54 | 53 | biimpri 133 |
. . . . . . 7
|
| 55 | 54 | adantl 277 |
. . . . . 6
|
| 56 | simpr 110 |
. . . . . . . . . . 11
| |
| 57 | eluzle 9695 |
. . . . . . . . . . . 12
| |
| 58 | 57 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 59 | 54 | nnzd 9529 |
. . . . . . . . . . . . . 14
|
| 60 | 59 | ad2antlr 489 |
. . . . . . . . . . . . 13
|
| 61 | 60 | zred 9530 |
. . . . . . . . . . . 12
|
| 62 | 1red 8122 |
. . . . . . . . . . . 12
| |
| 63 | 61, 62 | letri3d 8223 |
. . . . . . . . . . 11
|
| 64 | 56, 58, 63 | mpbir2and 947 |
. . . . . . . . . 10
|
| 65 | 64 | fveq2d 5603 |
. . . . . . . . 9
|
| 66 | 37 | ad2antrr 488 |
. . . . . . . . 9
|
| 67 | 65, 66 | eqtrd 2240 |
. . . . . . . 8
|
| 68 | 35 | ad2antrr 488 |
. . . . . . . 8
|
| 69 | 67, 68 | eqeltrd 2284 |
. . . . . . 7
|
| 70 | 1cnd 8123 |
. . . . . . 7
| |
| 71 | 55 | nnzd 9529 |
. . . . . . . 8
|
| 72 | 1zzd 9434 |
. . . . . . . 8
| |
| 73 | zdcle 9484 |
. . . . . . . 8
| |
| 74 | 71, 72, 73 | syl2anc 411 |
. . . . . . 7
|
| 75 | 69, 70, 74 | ifcldadc 3609 |
. . . . . 6
|
| 76 | 49, 52, 55, 75 | fvmptd3 5696 |
. . . . 5
|
| 77 | 76, 75 | eqeltrd 2284 |
. . . 4
|
| 78 | mulcl 8087 |
. . . . 5
| |
| 79 | 78 | adantl 277 |
. . . 4
|
| 80 | 48, 77, 79 | seq3-1 10644 |
. . 3
|
| 81 | breq1 4062 |
. . . . . 6
| |
| 82 | 81, 39 | ifbieq1d 3602 |
. . . . 5
|
| 83 | 1le1 8680 |
. . . . . . . 8
| |
| 84 | 83 | iftruei 3585 |
. . . . . . 7
|
| 85 | 84, 37 | eqtrid 2252 |
. . . . . 6
|
| 86 | 85, 35 | eqeltrd 2284 |
. . . . 5
|
| 87 | 49, 82, 7, 86 | fvmptd3 5696 |
. . . 4
|
| 88 | 87, 85 | eqtrd 2240 |
. . 3
|
| 89 | 80, 88 | eqtrd 2240 |
. 2
|
| 90 | 47, 89 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-proddc 11977 |
| This theorem is referenced by: prodsn 12019 fprodunsn 12030 fprodsplitsn 12059 |
| Copyright terms: Public domain | W3C validator |