ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodsnf Unicode version

Theorem prodsnf 11738
Description: A product of a singleton is the term. A version of prodsn 11739 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
prodsnf.1  |-  F/_ k B
prodsnf.2  |-  ( k  =  M  ->  A  =  B )
Assertion
Ref Expression
prodsnf  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
Distinct variable groups:    k, M    k, V
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem prodsnf
Dummy variables  m  n  j  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2336 . . . 4  |-  F/_ m A
2 nfcsb1v 3114 . . . 4  |-  F/_ k [_ m  /  k ]_ A
3 csbeq1a 3090 . . . 4  |-  ( k  =  m  ->  A  =  [_ m  /  k ]_ A )
41, 2, 3cbvprodi 11706 . . 3  |-  prod_ k  e.  { M } A  =  prod_ m  e.  { M } [_ m  / 
k ]_ A
5 csbeq1 3084 . . . 4  |-  ( m  =  ( { <. 1 ,  M >. } `
 n )  ->  [_ m  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A
)
6 1nn 8995 . . . . 5  |-  1  e.  NN
76a1i 9 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  NN )
8 1z 9346 . . . . . 6  |-  1  e.  ZZ
9 f1osng 5542 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
10 fzsn 10135 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
118, 10ax-mp 5 . . . . . . . 8  |-  ( 1 ... 1 )  =  { 1 }
12 f1oeq2 5490 . . . . . . . 8  |-  ( ( 1 ... 1 )  =  { 1 }  ->  ( { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M }  <->  { <. 1 ,  M >. } : {
1 } -1-1-onto-> { M } ) )
1311, 12ax-mp 5 . . . . . . 7  |-  ( {
<. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } 
<->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
149, 13sylibr 134 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
158, 14mpan 424 . . . . 5  |-  ( M  e.  V  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
1615adantr 276 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
17 velsn 3636 . . . . . 6  |-  ( m  e.  { M }  <->  m  =  M )
18 csbeq1 3084 . . . . . . 7  |-  ( m  =  M  ->  [_ m  /  k ]_ A  =  [_ M  /  k ]_ A )
19 prodsnf.1 . . . . . . . . . 10  |-  F/_ k B
2019a1i 9 . . . . . . . . 9  |-  ( M  e.  V  ->  F/_ k B )
21 prodsnf.2 . . . . . . . . 9  |-  ( k  =  M  ->  A  =  B )
2220, 21csbiegf 3125 . . . . . . . 8  |-  ( M  e.  V  ->  [_ M  /  k ]_ A  =  B )
2322adantr 276 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  [_ M  /  k ]_ A  =  B
)
2418, 23sylan9eqr 2248 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  =  M )  ->  [_ m  / 
k ]_ A  =  B )
2517, 24sylan2b 287 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  =  B )
26 simplr 528 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  B  e.  CC )
2725, 26eqeltrd 2270 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  e.  CC )
2811eleq2i 2260 . . . . . 6  |-  ( n  e.  ( 1 ... 1 )  <->  n  e.  { 1 } )
29 velsn 3636 . . . . . 6  |-  ( n  e.  { 1 }  <-> 
n  =  1 )
3028, 29bitri 184 . . . . 5  |-  ( n  e.  ( 1 ... 1 )  <->  n  = 
1 )
31 fvsng 5755 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
328, 31mpan 424 . . . . . . . . . 10  |-  ( M  e.  V  ->  ( { <. 1 ,  M >. } `  1 )  =  M )
3332adantr 276 . . . . . . . . 9  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
3433csbeq1d 3088 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  [_ ( { <. 1 ,  M >. } `
 1 )  / 
k ]_ A  =  [_ M  /  k ]_ A
)
35 simpr 110 . . . . . . . . 9  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  B  e.  CC )
36 fvsng 5755 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
378, 35, 36sylancr 414 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
3823, 34, 373eqtr4rd 2237 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  [_ ( { <. 1 ,  M >. } `  1 )  /  k ]_ A
)
39 fveq2 5555 . . . . . . . 8  |-  ( n  =  1  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
40 fveq2 5555 . . . . . . . . 9  |-  ( n  =  1  ->  ( { <. 1 ,  M >. } `  n )  =  ( { <. 1 ,  M >. } `
 1 ) )
4140csbeq1d 3088 . . . . . . . 8  |-  ( n  =  1  ->  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `
 1 )  / 
k ]_ A )
4239, 41eqeq12d 2208 . . . . . . 7  |-  ( n  =  1  ->  (
( { <. 1 ,  B >. } `  n
)  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A  <->  ( { <. 1 ,  B >. } `  1 )  =  [_ ( {
<. 1 ,  M >. } `  1 )  /  k ]_ A
) )
4338, 42syl5ibrcom 157 . . . . . 6  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( n  =  1  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A ) )
4443imp 124 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  =  1 )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
4530, 44sylan2b 287 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
465, 7, 16, 27, 45fprodseq 11729 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ m  e.  { M } [_ m  / 
k ]_ A  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) ) `  1 ) )
474, 46eqtrid 2238 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) ) `  1 ) )
48 1zzd 9347 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  ZZ )
49 eqid 2193 . . . . . 6  |-  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) )
50 breq1 4033 . . . . . . 7  |-  ( n  =  j  ->  (
n  <_  1  <->  j  <_  1 ) )
51 fveq2 5555 . . . . . . 7  |-  ( n  =  j  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 j ) )
5250, 51ifbieq1d 3580 . . . . . 6  |-  ( n  =  j  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  1 )  =  if ( j  <_  1 ,  ( { <. 1 ,  B >. } `  j ) ,  1 ) )
53 elnnuz 9632 . . . . . . . 8  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
5453biimpri 133 . . . . . . 7  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
5554adantl 277 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  j  e.  NN )
56 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  <_  1 )
57 eluzle 9607 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  1
)  ->  1  <_  j )
5857ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  1  <_  j )
5954nnzd 9441 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  ZZ )
6059ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  e.  ZZ )
6160zred 9442 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  e.  RR )
62 1red 8036 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  1  e.  RR )
6361, 62letri3d 8137 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( j  =  1  <->  ( j  <_  1  /\  1  <_ 
j ) ) )
6456, 58, 63mpbir2and 946 . . . . . . . . . 10  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  = 
1 )
6564fveq2d 5559 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 j )  =  ( { <. 1 ,  B >. } `  1
) )
6637ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 1 )  =  B )
6765, 66eqtrd 2226 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 j )  =  B )
6835ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  B  e.  CC )
6967, 68eqeltrd 2270 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 j )  e.  CC )
70 1cnd 8037 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  -.  j  <_  1 )  ->  1  e.  CC )
7155nnzd 9441 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  j  e.  ZZ )
72 1zzd 9347 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  1  e.  ZZ )
73 zdcle 9396 . . . . . . . 8  |-  ( ( j  e.  ZZ  /\  1  e.  ZZ )  -> DECID  j  <_  1 )
7471, 72, 73syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  -> DECID 
j  <_  1 )
7569, 70, 74ifcldadc 3587 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  if ( j  <_  1 ,  ( { <. 1 ,  B >. } `  j ) ,  1 )  e.  CC )
7649, 52, 55, 75fvmptd3 5652 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) `  j )  =  if ( j  <_  1 ,  ( { <. 1 ,  B >. } `  j ) ,  1 ) )
7776, 75eqeltrd 2270 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) `  j )  e.  CC )
78 mulcl 8001 . . . . 5  |-  ( ( j  e.  CC  /\  q  e.  CC )  ->  ( j  x.  q
)  e.  CC )
7978adantl 277 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  ( j  e.  CC  /\  q  e.  CC ) )  -> 
( j  x.  q
)  e.  CC )
8048, 77, 79seq3-1 10536 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) ) `  1
)  =  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  1 ) ) ` 
1 ) )
81 breq1 4033 . . . . . 6  |-  ( n  =  1  ->  (
n  <_  1  <->  1  <_  1 ) )
8281, 39ifbieq1d 3580 . . . . 5  |-  ( n  =  1  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  1 )  =  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `  1 ) ,  1 ) )
83 1le1 8593 . . . . . . . 8  |-  1  <_  1
8483iftruei 3564 . . . . . . 7  |-  if ( 1  <_  1 , 
( { <. 1 ,  B >. } `  1
) ,  1 )  =  ( { <. 1 ,  B >. } `
 1 )
8584, 37eqtrid 2238 . . . . . 6  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  1 )  =  B )
8685, 35eqeltrd 2270 . . . . 5  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  1 )  e.  CC )
8749, 82, 7, 86fvmptd3 5652 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) `
 1 )  =  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  1 ) )
8887, 85eqtrd 2226 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) `
 1 )  =  B )
8980, 88eqtrd 2226 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) ) `  1
)  =  B )
9047, 89eqtrd 2226 1  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164   F/_wnfc 2323   [_csb 3081   ifcif 3558   {csn 3619   <.cop 3622   class class class wbr 4030    |-> cmpt 4091   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919   CCcc 7872   1c1 7875    x. cmul 7879    <_ cle 8057   NNcn 8984   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077    seqcseq 10521   prod_cprod 11696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-proddc 11697
This theorem is referenced by:  prodsn  11739  fprodunsn  11750  fprodsplitsn  11779
  Copyright terms: Public domain W3C validator