| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodsnf | Unicode version | ||
| Description: A product of a singleton is the term. A version of prodsn 11904 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| prodsnf.1 |
|
| prodsnf.2 |
|
| Ref | Expression |
|---|---|
| prodsnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 |
. . . 4
| |
| 2 | nfcsb1v 3126 |
. . . 4
| |
| 3 | csbeq1a 3102 |
. . . 4
| |
| 4 | 1, 2, 3 | cbvprodi 11871 |
. . 3
|
| 5 | csbeq1 3096 |
. . . 4
| |
| 6 | 1nn 9047 |
. . . . 5
| |
| 7 | 6 | a1i 9 |
. . . 4
|
| 8 | 1z 9398 |
. . . . . 6
| |
| 9 | f1osng 5563 |
. . . . . . 7
| |
| 10 | fzsn 10188 |
. . . . . . . . 9
| |
| 11 | 8, 10 | ax-mp 5 |
. . . . . . . 8
|
| 12 | f1oeq2 5511 |
. . . . . . . 8
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . 7
|
| 14 | 9, 13 | sylibr 134 |
. . . . . 6
|
| 15 | 8, 14 | mpan 424 |
. . . . 5
|
| 16 | 15 | adantr 276 |
. . . 4
|
| 17 | velsn 3650 |
. . . . . 6
| |
| 18 | csbeq1 3096 |
. . . . . . 7
| |
| 19 | prodsnf.1 |
. . . . . . . . . 10
| |
| 20 | 19 | a1i 9 |
. . . . . . . . 9
|
| 21 | prodsnf.2 |
. . . . . . . . 9
| |
| 22 | 20, 21 | csbiegf 3137 |
. . . . . . . 8
|
| 23 | 22 | adantr 276 |
. . . . . . 7
|
| 24 | 18, 23 | sylan9eqr 2260 |
. . . . . 6
|
| 25 | 17, 24 | sylan2b 287 |
. . . . 5
|
| 26 | simplr 528 |
. . . . 5
| |
| 27 | 25, 26 | eqeltrd 2282 |
. . . 4
|
| 28 | 11 | eleq2i 2272 |
. . . . . 6
|
| 29 | velsn 3650 |
. . . . . 6
| |
| 30 | 28, 29 | bitri 184 |
. . . . 5
|
| 31 | fvsng 5780 |
. . . . . . . . . . 11
| |
| 32 | 8, 31 | mpan 424 |
. . . . . . . . . 10
|
| 33 | 32 | adantr 276 |
. . . . . . . . 9
|
| 34 | 33 | csbeq1d 3100 |
. . . . . . . 8
|
| 35 | simpr 110 |
. . . . . . . . 9
| |
| 36 | fvsng 5780 |
. . . . . . . . 9
| |
| 37 | 8, 35, 36 | sylancr 414 |
. . . . . . . 8
|
| 38 | 23, 34, 37 | 3eqtr4rd 2249 |
. . . . . . 7
|
| 39 | fveq2 5576 |
. . . . . . . 8
| |
| 40 | fveq2 5576 |
. . . . . . . . 9
| |
| 41 | 40 | csbeq1d 3100 |
. . . . . . . 8
|
| 42 | 39, 41 | eqeq12d 2220 |
. . . . . . 7
|
| 43 | 38, 42 | syl5ibrcom 157 |
. . . . . 6
|
| 44 | 43 | imp 124 |
. . . . 5
|
| 45 | 30, 44 | sylan2b 287 |
. . . 4
|
| 46 | 5, 7, 16, 27, 45 | fprodseq 11894 |
. . 3
|
| 47 | 4, 46 | eqtrid 2250 |
. 2
|
| 48 | 1zzd 9399 |
. . . 4
| |
| 49 | eqid 2205 |
. . . . . 6
| |
| 50 | breq1 4047 |
. . . . . . 7
| |
| 51 | fveq2 5576 |
. . . . . . 7
| |
| 52 | 50, 51 | ifbieq1d 3593 |
. . . . . 6
|
| 53 | elnnuz 9685 |
. . . . . . . 8
| |
| 54 | 53 | biimpri 133 |
. . . . . . 7
|
| 55 | 54 | adantl 277 |
. . . . . 6
|
| 56 | simpr 110 |
. . . . . . . . . . 11
| |
| 57 | eluzle 9660 |
. . . . . . . . . . . 12
| |
| 58 | 57 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 59 | 54 | nnzd 9494 |
. . . . . . . . . . . . . 14
|
| 60 | 59 | ad2antlr 489 |
. . . . . . . . . . . . 13
|
| 61 | 60 | zred 9495 |
. . . . . . . . . . . 12
|
| 62 | 1red 8087 |
. . . . . . . . . . . 12
| |
| 63 | 61, 62 | letri3d 8188 |
. . . . . . . . . . 11
|
| 64 | 56, 58, 63 | mpbir2and 947 |
. . . . . . . . . 10
|
| 65 | 64 | fveq2d 5580 |
. . . . . . . . 9
|
| 66 | 37 | ad2antrr 488 |
. . . . . . . . 9
|
| 67 | 65, 66 | eqtrd 2238 |
. . . . . . . 8
|
| 68 | 35 | ad2antrr 488 |
. . . . . . . 8
|
| 69 | 67, 68 | eqeltrd 2282 |
. . . . . . 7
|
| 70 | 1cnd 8088 |
. . . . . . 7
| |
| 71 | 55 | nnzd 9494 |
. . . . . . . 8
|
| 72 | 1zzd 9399 |
. . . . . . . 8
| |
| 73 | zdcle 9449 |
. . . . . . . 8
| |
| 74 | 71, 72, 73 | syl2anc 411 |
. . . . . . 7
|
| 75 | 69, 70, 74 | ifcldadc 3600 |
. . . . . 6
|
| 76 | 49, 52, 55, 75 | fvmptd3 5673 |
. . . . 5
|
| 77 | 76, 75 | eqeltrd 2282 |
. . . 4
|
| 78 | mulcl 8052 |
. . . . 5
| |
| 79 | 78 | adantl 277 |
. . . 4
|
| 80 | 48, 77, 79 | seq3-1 10607 |
. . 3
|
| 81 | breq1 4047 |
. . . . . 6
| |
| 82 | 81, 39 | ifbieq1d 3593 |
. . . . 5
|
| 83 | 1le1 8645 |
. . . . . . . 8
| |
| 84 | 83 | iftruei 3577 |
. . . . . . 7
|
| 85 | 84, 37 | eqtrid 2250 |
. . . . . 6
|
| 86 | 85, 35 | eqeltrd 2282 |
. . . . 5
|
| 87 | 49, 82, 7, 86 | fvmptd3 5673 |
. . . 4
|
| 88 | 87, 85 | eqtrd 2238 |
. . 3
|
| 89 | 80, 88 | eqtrd 2238 |
. 2
|
| 90 | 47, 89 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-frec 6477 df-1o 6502 df-oadd 6506 df-er 6620 df-en 6828 df-dom 6829 df-fin 6830 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-fz 10131 df-fzo 10265 df-seqfrec 10593 df-exp 10684 df-ihash 10921 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-clim 11590 df-proddc 11862 |
| This theorem is referenced by: prodsn 11904 fprodunsn 11915 fprodsplitsn 11944 |
| Copyright terms: Public domain | W3C validator |