ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodsnf Unicode version

Theorem prodsnf 12098
Description: A product of a singleton is the term. A version of prodsn 12099 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
prodsnf.1  |-  F/_ k B
prodsnf.2  |-  ( k  =  M  ->  A  =  B )
Assertion
Ref Expression
prodsnf  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
Distinct variable groups:    k, M    k, V
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem prodsnf
Dummy variables  m  n  j  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2372 . . . 4  |-  F/_ m A
2 nfcsb1v 3157 . . . 4  |-  F/_ k [_ m  /  k ]_ A
3 csbeq1a 3133 . . . 4  |-  ( k  =  m  ->  A  =  [_ m  /  k ]_ A )
41, 2, 3cbvprodi 12066 . . 3  |-  prod_ k  e.  { M } A  =  prod_ m  e.  { M } [_ m  / 
k ]_ A
5 csbeq1 3127 . . . 4  |-  ( m  =  ( { <. 1 ,  M >. } `
 n )  ->  [_ m  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A
)
6 1nn 9117 . . . . 5  |-  1  e.  NN
76a1i 9 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  NN )
8 1z 9468 . . . . . 6  |-  1  e.  ZZ
9 f1osng 5613 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
10 fzsn 10258 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
118, 10ax-mp 5 . . . . . . . 8  |-  ( 1 ... 1 )  =  { 1 }
12 f1oeq2 5560 . . . . . . . 8  |-  ( ( 1 ... 1 )  =  { 1 }  ->  ( { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M }  <->  { <. 1 ,  M >. } : {
1 } -1-1-onto-> { M } ) )
1311, 12ax-mp 5 . . . . . . 7  |-  ( {
<. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } 
<->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
149, 13sylibr 134 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
158, 14mpan 424 . . . . 5  |-  ( M  e.  V  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
1615adantr 276 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
17 velsn 3683 . . . . . 6  |-  ( m  e.  { M }  <->  m  =  M )
18 csbeq1 3127 . . . . . . 7  |-  ( m  =  M  ->  [_ m  /  k ]_ A  =  [_ M  /  k ]_ A )
19 prodsnf.1 . . . . . . . . . 10  |-  F/_ k B
2019a1i 9 . . . . . . . . 9  |-  ( M  e.  V  ->  F/_ k B )
21 prodsnf.2 . . . . . . . . 9  |-  ( k  =  M  ->  A  =  B )
2220, 21csbiegf 3168 . . . . . . . 8  |-  ( M  e.  V  ->  [_ M  /  k ]_ A  =  B )
2322adantr 276 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  [_ M  /  k ]_ A  =  B
)
2418, 23sylan9eqr 2284 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  =  M )  ->  [_ m  / 
k ]_ A  =  B )
2517, 24sylan2b 287 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  =  B )
26 simplr 528 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  B  e.  CC )
2725, 26eqeltrd 2306 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  e.  CC )
2811eleq2i 2296 . . . . . 6  |-  ( n  e.  ( 1 ... 1 )  <->  n  e.  { 1 } )
29 velsn 3683 . . . . . 6  |-  ( n  e.  { 1 }  <-> 
n  =  1 )
3028, 29bitri 184 . . . . 5  |-  ( n  e.  ( 1 ... 1 )  <->  n  = 
1 )
31 fvsng 5834 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
328, 31mpan 424 . . . . . . . . . 10  |-  ( M  e.  V  ->  ( { <. 1 ,  M >. } `  1 )  =  M )
3332adantr 276 . . . . . . . . 9  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
3433csbeq1d 3131 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  [_ ( { <. 1 ,  M >. } `
 1 )  / 
k ]_ A  =  [_ M  /  k ]_ A
)
35 simpr 110 . . . . . . . . 9  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  B  e.  CC )
36 fvsng 5834 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
378, 35, 36sylancr 414 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
3823, 34, 373eqtr4rd 2273 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  [_ ( { <. 1 ,  M >. } `  1 )  /  k ]_ A
)
39 fveq2 5626 . . . . . . . 8  |-  ( n  =  1  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
40 fveq2 5626 . . . . . . . . 9  |-  ( n  =  1  ->  ( { <. 1 ,  M >. } `  n )  =  ( { <. 1 ,  M >. } `
 1 ) )
4140csbeq1d 3131 . . . . . . . 8  |-  ( n  =  1  ->  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `
 1 )  / 
k ]_ A )
4239, 41eqeq12d 2244 . . . . . . 7  |-  ( n  =  1  ->  (
( { <. 1 ,  B >. } `  n
)  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A  <->  ( { <. 1 ,  B >. } `  1 )  =  [_ ( {
<. 1 ,  M >. } `  1 )  /  k ]_ A
) )
4338, 42syl5ibrcom 157 . . . . . 6  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( n  =  1  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A ) )
4443imp 124 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  =  1 )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
4530, 44sylan2b 287 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
465, 7, 16, 27, 45fprodseq 12089 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ m  e.  { M } [_ m  / 
k ]_ A  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) ) `  1 ) )
474, 46eqtrid 2274 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) ) `  1 ) )
48 1zzd 9469 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  ZZ )
49 eqid 2229 . . . . . 6  |-  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) )
50 breq1 4085 . . . . . . 7  |-  ( n  =  j  ->  (
n  <_  1  <->  j  <_  1 ) )
51 fveq2 5626 . . . . . . 7  |-  ( n  =  j  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 j ) )
5250, 51ifbieq1d 3625 . . . . . 6  |-  ( n  =  j  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  1 )  =  if ( j  <_  1 ,  ( { <. 1 ,  B >. } `  j ) ,  1 ) )
53 elnnuz 9755 . . . . . . . 8  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
5453biimpri 133 . . . . . . 7  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
5554adantl 277 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  j  e.  NN )
56 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  <_  1 )
57 eluzle 9730 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  1
)  ->  1  <_  j )
5857ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  1  <_  j )
5954nnzd 9564 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  ZZ )
6059ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  e.  ZZ )
6160zred 9565 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  e.  RR )
62 1red 8157 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  1  e.  RR )
6361, 62letri3d 8258 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( j  =  1  <->  ( j  <_  1  /\  1  <_ 
j ) ) )
6456, 58, 63mpbir2and 950 . . . . . . . . . 10  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  = 
1 )
6564fveq2d 5630 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 j )  =  ( { <. 1 ,  B >. } `  1
) )
6637ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 1 )  =  B )
6765, 66eqtrd 2262 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 j )  =  B )
6835ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  B  e.  CC )
6967, 68eqeltrd 2306 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 j )  e.  CC )
70 1cnd 8158 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  -.  j  <_  1 )  ->  1  e.  CC )
7155nnzd 9564 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  j  e.  ZZ )
72 1zzd 9469 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  1  e.  ZZ )
73 zdcle 9519 . . . . . . . 8  |-  ( ( j  e.  ZZ  /\  1  e.  ZZ )  -> DECID  j  <_  1 )
7471, 72, 73syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  -> DECID 
j  <_  1 )
7569, 70, 74ifcldadc 3632 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  if ( j  <_  1 ,  ( { <. 1 ,  B >. } `  j ) ,  1 )  e.  CC )
7649, 52, 55, 75fvmptd3 5727 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) `  j )  =  if ( j  <_  1 ,  ( { <. 1 ,  B >. } `  j ) ,  1 ) )
7776, 75eqeltrd 2306 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) `  j )  e.  CC )
78 mulcl 8122 . . . . 5  |-  ( ( j  e.  CC  /\  q  e.  CC )  ->  ( j  x.  q
)  e.  CC )
7978adantl 277 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  ( j  e.  CC  /\  q  e.  CC ) )  -> 
( j  x.  q
)  e.  CC )
8048, 77, 79seq3-1 10679 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) ) `  1
)  =  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  1 ) ) ` 
1 ) )
81 breq1 4085 . . . . . 6  |-  ( n  =  1  ->  (
n  <_  1  <->  1  <_  1 ) )
8281, 39ifbieq1d 3625 . . . . 5  |-  ( n  =  1  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  1 )  =  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `  1 ) ,  1 ) )
83 1le1 8715 . . . . . . . 8  |-  1  <_  1
8483iftruei 3608 . . . . . . 7  |-  if ( 1  <_  1 , 
( { <. 1 ,  B >. } `  1
) ,  1 )  =  ( { <. 1 ,  B >. } `
 1 )
8584, 37eqtrid 2274 . . . . . 6  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  1 )  =  B )
8685, 35eqeltrd 2306 . . . . 5  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  1 )  e.  CC )
8749, 82, 7, 86fvmptd3 5727 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) `
 1 )  =  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  1 ) )
8887, 85eqtrd 2262 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) `
 1 )  =  B )
8980, 88eqtrd 2262 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) ) `  1
)  =  B )
9047, 89eqtrd 2262 1  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395    e. wcel 2200   F/_wnfc 2359   [_csb 3124   ifcif 3602   {csn 3666   <.cop 3669   class class class wbr 4082    |-> cmpt 4144   -1-1-onto->wf1o 5316   ` cfv 5317  (class class class)co 6000   CCcc 7993   1c1 7996    x. cmul 8000    <_ cle 8178   NNcn 9106   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200    seqcseq 10664   prod_cprod 12056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-proddc 12057
This theorem is referenced by:  prodsn  12099  fprodunsn  12110  fprodsplitsn  12139
  Copyright terms: Public domain W3C validator