ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodsnf Unicode version

Theorem prodsnf 11757
Description: A product of a singleton is the term. A version of prodsn 11758 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
prodsnf.1  |-  F/_ k B
prodsnf.2  |-  ( k  =  M  ->  A  =  B )
Assertion
Ref Expression
prodsnf  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
Distinct variable groups:    k, M    k, V
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem prodsnf
Dummy variables  m  n  j  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2339 . . . 4  |-  F/_ m A
2 nfcsb1v 3117 . . . 4  |-  F/_ k [_ m  /  k ]_ A
3 csbeq1a 3093 . . . 4  |-  ( k  =  m  ->  A  =  [_ m  /  k ]_ A )
41, 2, 3cbvprodi 11725 . . 3  |-  prod_ k  e.  { M } A  =  prod_ m  e.  { M } [_ m  / 
k ]_ A
5 csbeq1 3087 . . . 4  |-  ( m  =  ( { <. 1 ,  M >. } `
 n )  ->  [_ m  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A
)
6 1nn 9001 . . . . 5  |-  1  e.  NN
76a1i 9 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  NN )
8 1z 9352 . . . . . 6  |-  1  e.  ZZ
9 f1osng 5545 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
10 fzsn 10141 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
118, 10ax-mp 5 . . . . . . . 8  |-  ( 1 ... 1 )  =  { 1 }
12 f1oeq2 5493 . . . . . . . 8  |-  ( ( 1 ... 1 )  =  { 1 }  ->  ( { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M }  <->  { <. 1 ,  M >. } : {
1 } -1-1-onto-> { M } ) )
1311, 12ax-mp 5 . . . . . . 7  |-  ( {
<. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } 
<->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
149, 13sylibr 134 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
158, 14mpan 424 . . . . 5  |-  ( M  e.  V  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
1615adantr 276 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
17 velsn 3639 . . . . . 6  |-  ( m  e.  { M }  <->  m  =  M )
18 csbeq1 3087 . . . . . . 7  |-  ( m  =  M  ->  [_ m  /  k ]_ A  =  [_ M  /  k ]_ A )
19 prodsnf.1 . . . . . . . . . 10  |-  F/_ k B
2019a1i 9 . . . . . . . . 9  |-  ( M  e.  V  ->  F/_ k B )
21 prodsnf.2 . . . . . . . . 9  |-  ( k  =  M  ->  A  =  B )
2220, 21csbiegf 3128 . . . . . . . 8  |-  ( M  e.  V  ->  [_ M  /  k ]_ A  =  B )
2322adantr 276 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  [_ M  /  k ]_ A  =  B
)
2418, 23sylan9eqr 2251 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  =  M )  ->  [_ m  / 
k ]_ A  =  B )
2517, 24sylan2b 287 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  =  B )
26 simplr 528 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  B  e.  CC )
2725, 26eqeltrd 2273 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  e.  CC )
2811eleq2i 2263 . . . . . 6  |-  ( n  e.  ( 1 ... 1 )  <->  n  e.  { 1 } )
29 velsn 3639 . . . . . 6  |-  ( n  e.  { 1 }  <-> 
n  =  1 )
3028, 29bitri 184 . . . . 5  |-  ( n  e.  ( 1 ... 1 )  <->  n  = 
1 )
31 fvsng 5758 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  M  e.  V )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
328, 31mpan 424 . . . . . . . . . 10  |-  ( M  e.  V  ->  ( { <. 1 ,  M >. } `  1 )  =  M )
3332adantr 276 . . . . . . . . 9  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
3433csbeq1d 3091 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  [_ ( { <. 1 ,  M >. } `
 1 )  / 
k ]_ A  =  [_ M  /  k ]_ A
)
35 simpr 110 . . . . . . . . 9  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  B  e.  CC )
36 fvsng 5758 . . . . . . . . 9  |-  ( ( 1  e.  ZZ  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
378, 35, 36sylancr 414 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
3823, 34, 373eqtr4rd 2240 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  [_ ( { <. 1 ,  M >. } `  1 )  /  k ]_ A
)
39 fveq2 5558 . . . . . . . 8  |-  ( n  =  1  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
40 fveq2 5558 . . . . . . . . 9  |-  ( n  =  1  ->  ( { <. 1 ,  M >. } `  n )  =  ( { <. 1 ,  M >. } `
 1 ) )
4140csbeq1d 3091 . . . . . . . 8  |-  ( n  =  1  ->  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `
 1 )  / 
k ]_ A )
4239, 41eqeq12d 2211 . . . . . . 7  |-  ( n  =  1  ->  (
( { <. 1 ,  B >. } `  n
)  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A  <->  ( { <. 1 ,  B >. } `  1 )  =  [_ ( {
<. 1 ,  M >. } `  1 )  /  k ]_ A
) )
4338, 42syl5ibrcom 157 . . . . . 6  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( n  =  1  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A ) )
4443imp 124 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  =  1 )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
4530, 44sylan2b 287 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
465, 7, 16, 27, 45fprodseq 11748 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ m  e.  { M } [_ m  / 
k ]_ A  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) ) `  1 ) )
474, 46eqtrid 2241 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) ) `  1 ) )
48 1zzd 9353 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  ZZ )
49 eqid 2196 . . . . . 6  |-  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) )
50 breq1 4036 . . . . . . 7  |-  ( n  =  j  ->  (
n  <_  1  <->  j  <_  1 ) )
51 fveq2 5558 . . . . . . 7  |-  ( n  =  j  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 j ) )
5250, 51ifbieq1d 3583 . . . . . 6  |-  ( n  =  j  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  1 )  =  if ( j  <_  1 ,  ( { <. 1 ,  B >. } `  j ) ,  1 ) )
53 elnnuz 9638 . . . . . . . 8  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
5453biimpri 133 . . . . . . 7  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
5554adantl 277 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  j  e.  NN )
56 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  <_  1 )
57 eluzle 9613 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  1
)  ->  1  <_  j )
5857ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  1  <_  j )
5954nnzd 9447 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  ZZ )
6059ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  e.  ZZ )
6160zred 9448 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  e.  RR )
62 1red 8041 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  1  e.  RR )
6361, 62letri3d 8142 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( j  =  1  <->  ( j  <_  1  /\  1  <_ 
j ) ) )
6456, 58, 63mpbir2and 946 . . . . . . . . . 10  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  j  = 
1 )
6564fveq2d 5562 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 j )  =  ( { <. 1 ,  B >. } `  1
) )
6637ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 1 )  =  B )
6765, 66eqtrd 2229 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 j )  =  B )
6835ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  B  e.  CC )
6967, 68eqeltrd 2273 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  j  <_  1 )  ->  ( { <. 1 ,  B >. } `
 j )  e.  CC )
70 1cnd 8042 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  ( ZZ>= `  1 )
)  /\  -.  j  <_  1 )  ->  1  e.  CC )
7155nnzd 9447 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  j  e.  ZZ )
72 1zzd 9353 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  1  e.  ZZ )
73 zdcle 9402 . . . . . . . 8  |-  ( ( j  e.  ZZ  /\  1  e.  ZZ )  -> DECID  j  <_  1 )
7471, 72, 73syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  -> DECID 
j  <_  1 )
7569, 70, 74ifcldadc 3590 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  if ( j  <_  1 ,  ( { <. 1 ,  B >. } `  j ) ,  1 )  e.  CC )
7649, 52, 55, 75fvmptd3 5655 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) `  j )  =  if ( j  <_  1 ,  ( { <. 1 ,  B >. } `  j ) ,  1 ) )
7776, 75eqeltrd 2273 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  j  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) `  j )  e.  CC )
78 mulcl 8006 . . . . 5  |-  ( ( j  e.  CC  /\  q  e.  CC )  ->  ( j  x.  q
)  e.  CC )
7978adantl 277 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  ( j  e.  CC  /\  q  e.  CC ) )  -> 
( j  x.  q
)  e.  CC )
8048, 77, 79seq3-1 10554 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) ) `  1
)  =  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  1 ) ) ` 
1 ) )
81 breq1 4036 . . . . . 6  |-  ( n  =  1  ->  (
n  <_  1  <->  1  <_  1 ) )
8281, 39ifbieq1d 3583 . . . . 5  |-  ( n  =  1  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  1 )  =  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `  1 ) ,  1 ) )
83 1le1 8599 . . . . . . . 8  |-  1  <_  1
8483iftruei 3567 . . . . . . 7  |-  if ( 1  <_  1 , 
( { <. 1 ,  B >. } `  1
) ,  1 )  =  ( { <. 1 ,  B >. } `
 1 )
8584, 37eqtrid 2241 . . . . . 6  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  1 )  =  B )
8685, 35eqeltrd 2273 . . . . 5  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  1 )  e.  CC )
8749, 82, 7, 86fvmptd3 5655 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) `
 1 )  =  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  1 ) )
8887, 85eqtrd 2229 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  1 ) ) `
 1 )  =  B )
8980, 88eqtrd 2229 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  1 ) ) ) `  1
)  =  B )
9047, 89eqtrd 2229 1  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  prod_ k  e.  { M } A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167   F/_wnfc 2326   [_csb 3084   ifcif 3561   {csn 3622   <.cop 3625   class class class wbr 4033    |-> cmpt 4094   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922   CCcc 7877   1c1 7880    x. cmul 7884    <_ cle 8062   NNcn 8990   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539   prod_cprod 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716
This theorem is referenced by:  prodsn  11758  fprodunsn  11769  fprodsplitsn  11798
  Copyright terms: Public domain W3C validator