| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1osn | Unicode version | ||
| Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| f1osn.1 |
|
| f1osn.2 |
|
| Ref | Expression |
|---|---|
| f1osn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1osn.1 |
. . 3
| |
| 2 | f1osn.2 |
. . 3
| |
| 3 | 1, 2 | fnsn 5375 |
. 2
|
| 4 | 2, 1 | fnsn 5375 |
. . 3
|
| 5 | 1, 2 | cnvsn 5211 |
. . . 4
|
| 6 | 5 | fneq1i 5415 |
. . 3
|
| 7 | 4, 6 | mpbir 146 |
. 2
|
| 8 | dff1o4 5580 |
. 2
| |
| 9 | 3, 7, 8 | mpbir2an 948 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 |
| This theorem is referenced by: f1osng 5614 fsn 5807 mapsn 6837 ensn1 6948 phplem2 7014 ac6sfi 7060 fxnn0nninf 10661 |
| Copyright terms: Public domain | W3C validator |