ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1osn Unicode version

Theorem f1osn 5454
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
f1osn.1  |-  A  e. 
_V
f1osn.2  |-  B  e. 
_V
Assertion
Ref Expression
f1osn  |-  { <. A ,  B >. } : { A } -1-1-onto-> { B }

Proof of Theorem f1osn
StepHypRef Expression
1 f1osn.1 . . 3  |-  A  e. 
_V
2 f1osn.2 . . 3  |-  B  e. 
_V
31, 2fnsn 5224 . 2  |-  { <. A ,  B >. }  Fn  { A }
42, 1fnsn 5224 . . 3  |-  { <. B ,  A >. }  Fn  { B }
51, 2cnvsn 5068 . . . 4  |-  `' { <. A ,  B >. }  =  { <. B ,  A >. }
65fneq1i 5264 . . 3  |-  ( `' { <. A ,  B >. }  Fn  { B } 
<->  { <. B ,  A >. }  Fn  { B } )
74, 6mpbir 145 . 2  |-  `' { <. A ,  B >. }  Fn  { B }
8 dff1o4 5422 . 2  |-  ( {
<. A ,  B >. } : { A } -1-1-onto-> { B }  <->  ( { <. A ,  B >. }  Fn  { A }  /\  `' { <. A ,  B >. }  Fn  { B } ) )
93, 7, 8mpbir2an 927 1  |-  { <. A ,  B >. } : { A } -1-1-onto-> { B }
Colors of variables: wff set class
Syntax hints:    e. wcel 2128   _Vcvv 2712   {csn 3560   <.cop 3563   `'ccnv 4585    Fn wfn 5165   -1-1-onto->wf1o 5169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177
This theorem is referenced by:  f1osng  5455  fsn  5639  mapsn  6635  ensn1  6741  phplem2  6798  ac6sfi  6843  fxnn0nninf  10337
  Copyright terms: Public domain W3C validator