ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1osn Unicode version

Theorem f1osn 5503
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
f1osn.1  |-  A  e. 
_V
f1osn.2  |-  B  e. 
_V
Assertion
Ref Expression
f1osn  |-  { <. A ,  B >. } : { A } -1-1-onto-> { B }

Proof of Theorem f1osn
StepHypRef Expression
1 f1osn.1 . . 3  |-  A  e. 
_V
2 f1osn.2 . . 3  |-  B  e. 
_V
31, 2fnsn 5272 . 2  |-  { <. A ,  B >. }  Fn  { A }
42, 1fnsn 5272 . . 3  |-  { <. B ,  A >. }  Fn  { B }
51, 2cnvsn 5113 . . . 4  |-  `' { <. A ,  B >. }  =  { <. B ,  A >. }
65fneq1i 5312 . . 3  |-  ( `' { <. A ,  B >. }  Fn  { B } 
<->  { <. B ,  A >. }  Fn  { B } )
74, 6mpbir 146 . 2  |-  `' { <. A ,  B >. }  Fn  { B }
8 dff1o4 5471 . 2  |-  ( {
<. A ,  B >. } : { A } -1-1-onto-> { B }  <->  ( { <. A ,  B >. }  Fn  { A }  /\  `' { <. A ,  B >. }  Fn  { B } ) )
93, 7, 8mpbir2an 942 1  |-  { <. A ,  B >. } : { A } -1-1-onto-> { B }
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   _Vcvv 2739   {csn 3594   <.cop 3597   `'ccnv 4627    Fn wfn 5213   -1-1-onto->wf1o 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225
This theorem is referenced by:  f1osng  5504  fsn  5690  mapsn  6692  ensn1  6798  phplem2  6855  ac6sfi  6900  fxnn0nninf  10440
  Copyright terms: Public domain W3C validator