ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oi Unicode version

Theorem f1oi 5539
Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
f1oi  |-  (  _I  |`  A ) : A -1-1-onto-> A

Proof of Theorem f1oi
StepHypRef Expression
1 fnresi 5372 . 2  |-  (  _I  |`  A )  Fn  A
2 cnvresid 5329 . . . 4  |-  `' (  _I  |`  A )  =  (  _I  |`  A )
32fneq1i 5349 . . 3  |-  ( `' (  _I  |`  A )  Fn  A  <->  (  _I  |`  A )  Fn  A
)
41, 3mpbir 146 . 2  |-  `' (  _I  |`  A )  Fn  A
5 dff1o4 5509 . 2  |-  ( (  _I  |`  A ) : A -1-1-onto-> A  <->  ( (  _I  |`  A )  Fn  A  /\  `' (  _I  |`  A )  Fn  A ) )
61, 4, 5mpbir2an 944 1  |-  (  _I  |`  A ) : A -1-1-onto-> A
Colors of variables: wff set class
Syntax hints:    _I cid 4320   `'ccnv 4659    |` cres 4662    Fn wfn 5250   -1-1-onto->wf1o 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262
This theorem is referenced by:  f1ovi  5540  isoid  5854  enrefg  6820  ssdomg  6834  omp1eomlem  7155  ctm  7170  omct  7178  ctssexmid  7211  ssomct  12605  idmhm  13044  idghm  13332  ssidcn  14389  dvid  14874  dvidre  14876  dvexp  14890  subctctexmid  15561
  Copyright terms: Public domain W3C validator