ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oi Unicode version

Theorem f1oi 5491
Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
f1oi  |-  (  _I  |`  A ) : A -1-1-onto-> A

Proof of Theorem f1oi
StepHypRef Expression
1 fnresi 5325 . 2  |-  (  _I  |`  A )  Fn  A
2 cnvresid 5282 . . . 4  |-  `' (  _I  |`  A )  =  (  _I  |`  A )
32fneq1i 5302 . . 3  |-  ( `' (  _I  |`  A )  Fn  A  <->  (  _I  |`  A )  Fn  A
)
41, 3mpbir 146 . 2  |-  `' (  _I  |`  A )  Fn  A
5 dff1o4 5461 . 2  |-  ( (  _I  |`  A ) : A -1-1-onto-> A  <->  ( (  _I  |`  A )  Fn  A  /\  `' (  _I  |`  A )  Fn  A ) )
61, 4, 5mpbir2an 942 1  |-  (  _I  |`  A ) : A -1-1-onto-> A
Colors of variables: wff set class
Syntax hints:    _I cid 4282   `'ccnv 4619    |` cres 4622    Fn wfn 5203   -1-1-onto->wf1o 5207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215
This theorem is referenced by:  f1ovi  5492  isoid  5801  enrefg  6754  ssdomg  6768  omp1eomlem  7083  ctm  7098  omct  7106  ctssexmid  7138  ssomct  12411  idmhm  12721  ssidcn  13261  dvid  13713  dvexp  13726  subctctexmid  14291
  Copyright terms: Public domain W3C validator