ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oi Unicode version

Theorem f1oi 5469
Description: A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
f1oi  |-  (  _I  |`  A ) : A -1-1-onto-> A

Proof of Theorem f1oi
StepHypRef Expression
1 fnresi 5304 . 2  |-  (  _I  |`  A )  Fn  A
2 cnvresid 5261 . . . 4  |-  `' (  _I  |`  A )  =  (  _I  |`  A )
32fneq1i 5281 . . 3  |-  ( `' (  _I  |`  A )  Fn  A  <->  (  _I  |`  A )  Fn  A
)
41, 3mpbir 145 . 2  |-  `' (  _I  |`  A )  Fn  A
5 dff1o4 5439 . 2  |-  ( (  _I  |`  A ) : A -1-1-onto-> A  <->  ( (  _I  |`  A )  Fn  A  /\  `' (  _I  |`  A )  Fn  A ) )
61, 4, 5mpbir2an 932 1  |-  (  _I  |`  A ) : A -1-1-onto-> A
Colors of variables: wff set class
Syntax hints:    _I cid 4265   `'ccnv 4602    |` cres 4605    Fn wfn 5182   -1-1-onto->wf1o 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194
This theorem is referenced by:  f1ovi  5470  isoid  5777  enrefg  6726  ssdomg  6740  omp1eomlem  7055  ctm  7070  omct  7078  ctssexmid  7110  ssomct  12374  ssidcn  12810  dvid  13262  dvexp  13275  subctctexmid  13841
  Copyright terms: Public domain W3C validator