| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > f1ovi | GIF version | ||
| Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.) | 
| Ref | Expression | 
|---|---|
| f1ovi | ⊢ I :V–1-1-onto→V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1oi 5542 | . 2 ⊢ ( I ↾ V):V–1-1-onto→V | |
| 2 | reli 4795 | . . . 4 ⊢ Rel I | |
| 3 | dfrel3 5127 | . . . 4 ⊢ (Rel I ↔ ( I ↾ V) = I ) | |
| 4 | 2, 3 | mpbi 145 | . . 3 ⊢ ( I ↾ V) = I | 
| 5 | f1oeq1 5492 | . . 3 ⊢ (( I ↾ V) = I → (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V) | 
| 7 | 1, 6 | mpbi 145 | 1 ⊢ I :V–1-1-onto→V | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 = wceq 1364 Vcvv 2763 I cid 4323 ↾ cres 4665 Rel wrel 4668 –1-1-onto→wf1o 5257 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 | 
| This theorem is referenced by: residfi 7006 | 
| Copyright terms: Public domain | W3C validator |