| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ovi | GIF version | ||
| Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.) |
| Ref | Expression |
|---|---|
| f1ovi | ⊢ I :V–1-1-onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 5560 | . 2 ⊢ ( I ↾ V):V–1-1-onto→V | |
| 2 | reli 4807 | . . . 4 ⊢ Rel I | |
| 3 | dfrel3 5140 | . . . 4 ⊢ (Rel I ↔ ( I ↾ V) = I ) | |
| 4 | 2, 3 | mpbi 145 | . . 3 ⊢ ( I ↾ V) = I |
| 5 | f1oeq1 5510 | . . 3 ⊢ (( I ↾ V) = I → (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V) |
| 7 | 1, 6 | mpbi 145 | 1 ⊢ I :V–1-1-onto→V |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 Vcvv 2772 I cid 4335 ↾ cres 4677 Rel wrel 4680 –1-1-onto→wf1o 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 |
| This theorem is referenced by: residfi 7042 |
| Copyright terms: Public domain | W3C validator |