Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ovi GIF version

Theorem f1ovi 5406
 Description: The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.)
Assertion
Ref Expression
f1ovi I :V–1-1-onto→V

Proof of Theorem f1ovi
StepHypRef Expression
1 f1oi 5405 . 2 ( I ↾ V):V–1-1-onto→V
2 reli 4668 . . . 4 Rel I
3 dfrel3 4996 . . . 4 (Rel I ↔ ( I ↾ V) = I )
42, 3mpbi 144 . . 3 ( I ↾ V) = I
5 f1oeq1 5356 . . 3 (( I ↾ V) = I → (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V))
64, 5ax-mp 5 . 2 (( I ↾ V):V–1-1-onto→V ↔ I :V–1-1-onto→V)
71, 6mpbi 144 1 I :V–1-1-onto→V
 Colors of variables: wff set class Syntax hints:   ↔ wb 104   = wceq 1331  Vcvv 2686   I cid 4210   ↾ cres 4541  Rel wrel 4544  –1-1-onto→wf1o 5122 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator