Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpt3 Unicode version

Theorem dfmpt3 5213
 Description: Alternate definition for the maps-to notation df-mpt 3959. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
dfmpt3

Proof of Theorem dfmpt3
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpt 3959 . 2
2 velsn 3512 . . . . . . 7
32anbi2i 450 . . . . . 6
43anbi2i 450 . . . . 5
542exbii 1568 . . . 4
6 eliunxp 4646 . . . 4
7 elopab 4148 . . . 4
85, 6, 73bitr4i 211 . . 3
98eqriv 2112 . 2
101, 9eqtr4i 2139 1
 Colors of variables: wff set class Syntax hints:   wa 103   wceq 1314  wex 1451   wcel 1463  csn 3495  cop 3498  ciun 3781  copab 3956   cmpt 3957   cxp 4505 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099 This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-csb 2974  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-iun 3783  df-opab 3958  df-mpt 3959  df-xp 4513  df-rel 4514 This theorem is referenced by:  dfmpt  5563  dfmptg  5565
 Copyright terms: Public domain W3C validator