ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpt3 Unicode version

Theorem dfmpt3 5418
Description: Alternate definition for the maps-to notation df-mpt 4123. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
dfmpt3  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  ( { x }  X.  { B }
)

Proof of Theorem dfmpt3
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpt 4123 . 2  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
2 velsn 3660 . . . . . . 7  |-  ( y  e.  { B }  <->  y  =  B )
32anbi2i 457 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  { B } )  <->  ( x  e.  A  /\  y  =  B ) )
43anbi2i 457 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  { B } ) )  <->  ( z  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  =  B ) ) )
542exbii 1630 . . . 4  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  { B } ) )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  =  B
) ) )
6 eliunxp 4835 . . . 4  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { B }
)  <->  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  { B } ) ) )
7 elopab 4322 . . . 4  |-  ( z  e.  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) } 
<->  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  =  B )
) )
85, 6, 73bitr4i 212 . . 3  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { B }
)  <->  z  e.  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) } )
98eqriv 2204 . 2  |-  U_ x  e.  A  ( {
x }  X.  { B } )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
101, 9eqtr4i 2231 1  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  ( { x }  X.  { B }
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178   {csn 3643   <.cop 3646   U_ciun 3941   {copab 4120    |-> cmpt 4121    X. cxp 4691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-iun 3943  df-opab 4122  df-mpt 4123  df-xp 4699  df-rel 4700
This theorem is referenced by:  dfmpt  5780  dfmptg  5782
  Copyright terms: Public domain W3C validator