ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmpt3 Unicode version

Theorem dfmpt3 5320
Description: Alternate definition for the maps-to notation df-mpt 4052. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
dfmpt3  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  ( { x }  X.  { B }
)

Proof of Theorem dfmpt3
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpt 4052 . 2  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
2 velsn 3600 . . . . . . 7  |-  ( y  e.  { B }  <->  y  =  B )
32anbi2i 454 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  { B } )  <->  ( x  e.  A  /\  y  =  B ) )
43anbi2i 454 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  { B } ) )  <->  ( z  =  <. x ,  y
>.  /\  ( x  e.  A  /\  y  =  B ) ) )
542exbii 1599 . . . 4  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  { B } ) )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  y  =  B
) ) )
6 eliunxp 4750 . . . 4  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { B }
)  <->  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  e.  { B } ) ) )
7 elopab 4243 . . . 4  |-  ( z  e.  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) } 
<->  E. x E. y
( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  y  =  B )
) )
85, 6, 73bitr4i 211 . . 3  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { B }
)  <->  z  e.  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) } )
98eqriv 2167 . 2  |-  U_ x  e.  A  ( {
x }  X.  { B } )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
101, 9eqtr4i 2194 1  |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  ( { x }  X.  { B }
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   {csn 3583   <.cop 3586   U_ciun 3873   {copab 4049    |-> cmpt 4050    X. cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-iun 3875  df-opab 4051  df-mpt 4052  df-xp 4617  df-rel 4618
This theorem is referenced by:  dfmpt  5673  dfmptg  5675
  Copyright terms: Public domain W3C validator