![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnimaeq0 | GIF version |
Description: Images under a function never map nonempty sets to empty sets. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
Ref | Expression |
---|---|
fnimaeq0 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadisj 5028 | . 2 ⊢ ((𝐹 “ 𝐵) = ∅ ↔ (dom 𝐹 ∩ 𝐵) = ∅) | |
2 | incom 3352 | . . . 4 ⊢ (dom 𝐹 ∩ 𝐵) = (𝐵 ∩ dom 𝐹) | |
3 | fndm 5354 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | sseq2d 3210 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝐵 ⊆ dom 𝐹 ↔ 𝐵 ⊆ 𝐴)) |
5 | 4 | biimpar 297 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ dom 𝐹) |
6 | df-ss 3167 | . . . . 5 ⊢ (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵) | |
7 | 5, 6 | sylib 122 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∩ dom 𝐹) = 𝐵) |
8 | 2, 7 | eqtrid 2238 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (dom 𝐹 ∩ 𝐵) = 𝐵) |
9 | 8 | eqeq1d 2202 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((dom 𝐹 ∩ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
10 | 1, 9 | bitrid 192 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝐹 “ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∩ cin 3153 ⊆ wss 3154 ∅c0 3447 dom cdm 4660 “ cima 4663 Fn wfn 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-fn 5258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |