Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  funmptd Unicode version

Theorem funmptd 15701
Description: The maps-to notation defines a function (deduction form).

Note: one should similarly prove a deduction form of funopab4 5307, then prove funmptd 15701 from it, and then prove funmpt 5308 from that: this would reduce global proof length. (Contributed by BJ, 5-Aug-2024.)

Hypothesis
Ref Expression
funmptd.def  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
Assertion
Ref Expression
funmptd  |-  ( ph  ->  Fun  F )

Proof of Theorem funmptd
StepHypRef Expression
1 funmpt 5308 . 2  |-  Fun  (
x  e.  A  |->  B )
2 funmptd.def . . 3  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
32funeqd 5292 . 2  |-  ( ph  ->  ( Fun  F  <->  Fun  ( x  e.  A  |->  B ) ) )
41, 3mpbiri 168 1  |-  ( ph  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    |-> cmpt 4104   Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-fun 5272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator