Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  funmptd Unicode version

Theorem funmptd 13645
Description: The maps-to notation defines a function (deduction form).

Note: one should similarly prove a deduction form of funopab4 5224, then prove funmptd 13645 from it, and then prove funmpt 5225 from that: this would reduce global proof length. (Contributed by BJ, 5-Aug-2024.)

Hypothesis
Ref Expression
funmptd.def  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
Assertion
Ref Expression
funmptd  |-  ( ph  ->  Fun  F )

Proof of Theorem funmptd
StepHypRef Expression
1 funmpt 5225 . 2  |-  Fun  (
x  e.  A  |->  B )
2 funmptd.def . . 3  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
32funeqd 5209 . 2  |-  ( ph  ->  ( Fun  F  <->  Fun  ( x  e.  A  |->  B ) ) )
41, 3mpbiri 167 1  |-  ( ph  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    |-> cmpt 4042   Fun wfun 5181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-fun 5189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator