Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  funmptd Unicode version

Theorem funmptd 15878
Description: The maps-to notation defines a function (deduction form).

Note: one should similarly prove a deduction form of funopab4 5317, then prove funmptd 15878 from it, and then prove funmpt 5318 from that: this would reduce global proof length. (Contributed by BJ, 5-Aug-2024.)

Hypothesis
Ref Expression
funmptd.def  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
Assertion
Ref Expression
funmptd  |-  ( ph  ->  Fun  F )

Proof of Theorem funmptd
StepHypRef Expression
1 funmpt 5318 . 2  |-  Fun  (
x  e.  A  |->  B )
2 funmptd.def . . 3  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
32funeqd 5302 . 2  |-  ( ph  ->  ( Fun  F  <->  Fun  ( x  e.  A  |->  B ) ) )
41, 3mpbiri 168 1  |-  ( ph  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    |-> cmpt 4113   Fun wfun 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-fun 5282
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator