Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  fnmptd GIF version

Theorem fnmptd 15740
Description: The maps-to notation defines a function with domain (deduction form). (Contributed by BJ, 5-Aug-2024.)
Hypotheses
Ref Expression
fnmptd.def (𝜑𝐹 = (𝑥𝐴𝐵))
fnmptd.ex ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fnmptd (𝜑𝐹 Fn 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fnmptd
StepHypRef Expression
1 fnmptd.ex . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
21ralrimiva 2579 . . 3 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
3 eqid 2205 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43fnmpt 5402 . . 3 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) Fn 𝐴)
52, 4syl 14 . 2 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
6 fnmptd.def . . 3 (𝜑𝐹 = (𝑥𝐴𝐵))
76fneq1d 5364 . 2 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
85, 7mpbird 167 1 (𝜑𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  wral 2484  cmpt 4105   Fn wfn 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-fun 5273  df-fn 5274
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator