Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  fnmptd GIF version

Theorem fnmptd 15940
Description: The maps-to notation defines a function with domain (deduction form). (Contributed by BJ, 5-Aug-2024.)
Hypotheses
Ref Expression
fnmptd.def (𝜑𝐹 = (𝑥𝐴𝐵))
fnmptd.ex ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fnmptd (𝜑𝐹 Fn 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fnmptd
StepHypRef Expression
1 fnmptd.ex . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
21ralrimiva 2581 . . 3 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
3 eqid 2207 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43fnmpt 5422 . . 3 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) Fn 𝐴)
52, 4syl 14 . 2 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
6 fnmptd.def . . 3 (𝜑𝐹 = (𝑥𝐴𝐵))
76fneq1d 5383 . 2 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
85, 7mpbird 167 1 (𝜑𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  wral 2486  cmpt 4121   Fn wfn 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-fun 5292  df-fn 5293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator