ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpt Unicode version

Theorem fnmpt 5354
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.)
Hypothesis
Ref Expression
mptfng.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fnmpt  |-  ( A. x  e.  A  B  e.  V  ->  F  Fn  A )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fnmpt
StepHypRef Expression
1 elex 2760 . . 3  |-  ( B  e.  V  ->  B  e.  _V )
21ralimi 2550 . 2  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  B  e.  _V )
3 mptfng.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
43mptfng 5353 . 2  |-  ( A. x  e.  A  B  e.  _V  <->  F  Fn  A
)
52, 4sylib 122 1  |-  ( A. x  e.  A  B  e.  V  ->  F  Fn  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2158   A.wral 2465   _Vcvv 2749    |-> cmpt 4076    Fn wfn 5223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-fun 5230  df-fn 5231
This theorem is referenced by:  mpt0  5355  fnmptfvd  5633  ralrnmpt  5671  rexrnmpt  5672  fmpt  5679  fmpt2d  5691  f1ocnvd  6086  offval2  6111  ofrfval2  6112  caofinvl  6118  f1od2  6249  frectfr  6414  omfnex  6463  oeiv  6470  mptelixpg  6747  fifo  6992  nnnninfeq  7139  nninfwlporlemd  7183  cc2lem  7278  efcvgfsum  11688  quslem  12762  grpinvfng  12940  neif  13912  tgrest  13940  dvrecap  14448  fnmptd  14827
  Copyright terms: Public domain W3C validator