ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpt Unicode version

Theorem fnmpt 5155
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.)
Hypothesis
Ref Expression
mptfng.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fnmpt  |-  ( A. x  e.  A  B  e.  V  ->  F  Fn  A )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fnmpt
StepHypRef Expression
1 elex 2633 . . 3  |-  ( B  e.  V  ->  B  e.  _V )
21ralimi 2439 . 2  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  B  e.  _V )
3 mptfng.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
43mptfng 5154 . 2  |-  ( A. x  e.  A  B  e.  _V  <->  F  Fn  A
)
52, 4sylib 121 1  |-  ( A. x  e.  A  B  e.  V  ->  F  Fn  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    e. wcel 1439   A.wral 2360   _Vcvv 2622    |-> cmpt 3907    Fn wfn 5025
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-fun 5032  df-fn 5033
This theorem is referenced by:  mpt0  5156  ralrnmpt  5457  rexrnmpt  5458  fmpt  5465  fmpt2d  5476  f1ocnvd  5862  offval2  5886  ofrfval2  5887  caofinvl  5893  f1od2  6016  frectfr  6181  omfnex  6226  oeiv  6233  mptelixpg  6507  efcvgfsum  11020  neif  11904  nninfalllemn  12201
  Copyright terms: Public domain W3C validator