ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnopab Unicode version

Theorem fnopab 5332
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996.)
Hypotheses
Ref Expression
fnopab.1  |-  ( x  e.  A  ->  E! y ph )
fnopab.2  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }
Assertion
Ref Expression
fnopab  |-  F  Fn  A
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)    F( x, y)

Proof of Theorem fnopab
StepHypRef Expression
1 fnopab.1 . . 3  |-  ( x  e.  A  ->  E! y ph )
21rgen 2528 . 2  |-  A. x  e.  A  E! y ph
3 fnopab.2 . . 3  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }
43fnopabg 5331 . 2  |-  ( A. x  e.  A  E! y ph  <->  F  Fn  A
)
52, 4mpbi 145 1  |-  F  Fn  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E!weu 2024    e. wcel 2146   A.wral 2453   {copab 4058    Fn wfn 5203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-fun 5210  df-fn 5211
This theorem is referenced by:  fvopab3g  5581
  Copyright terms: Public domain W3C validator