Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnopab | Unicode version |
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996.) |
Ref | Expression |
---|---|
fnopab.1 | |
fnopab.2 |
Ref | Expression |
---|---|
fnopab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnopab.1 | . . 3 | |
2 | 1 | rgen 2510 | . 2 |
3 | fnopab.2 | . . 3 | |
4 | 3 | fnopabg 5292 | . 2 |
5 | 2, 4 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 weu 2006 wcel 2128 wral 2435 copab 4024 wfn 5164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-fun 5171 df-fn 5172 |
This theorem is referenced by: fvopab3g 5540 |
Copyright terms: Public domain | W3C validator |