ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnopab Unicode version

Theorem fnopab 5311
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996.)
Hypotheses
Ref Expression
fnopab.1  |-  ( x  e.  A  ->  E! y ph )
fnopab.2  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }
Assertion
Ref Expression
fnopab  |-  F  Fn  A
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)    F( x, y)

Proof of Theorem fnopab
StepHypRef Expression
1 fnopab.1 . . 3  |-  ( x  e.  A  ->  E! y ph )
21rgen 2518 . 2  |-  A. x  e.  A  E! y ph
3 fnopab.2 . . 3  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }
43fnopabg 5310 . 2  |-  ( A. x  e.  A  E! y ph  <->  F  Fn  A
)
52, 4mpbi 144 1  |-  F  Fn  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E!weu 2014    e. wcel 2136   A.wral 2443   {copab 4041    Fn wfn 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-fun 5189  df-fn 5190
This theorem is referenced by:  fvopab3g  5558
  Copyright terms: Public domain W3C validator