ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnopabg Unicode version

Theorem fnopabg 5419
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fnopabg.1  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }
Assertion
Ref Expression
fnopabg  |-  ( A. x  e.  A  E! y ph  <->  F  Fn  A
)
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)    F( x, y)

Proof of Theorem fnopabg
StepHypRef Expression
1 moanimv 2131 . . . . . 6  |-  ( E* y ( x  e.  A  /\  ph )  <->  ( x  e.  A  ->  E* y ph ) )
21albii 1494 . . . . 5  |-  ( A. x E* y ( x  e.  A  /\  ph ) 
<-> 
A. x ( x  e.  A  ->  E* y ph ) )
3 funopab 5325 . . . . 5  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } 
<-> 
A. x E* y
( x  e.  A  /\  ph ) )
4 df-ral 2491 . . . . 5  |-  ( A. x  e.  A  E* y ph  <->  A. x ( x  e.  A  ->  E* y ph ) )
52, 3, 43bitr4ri 213 . . . 4  |-  ( A. x  e.  A  E* y ph  <->  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } )
6 dmopab3 4910 . . . 4  |-  ( A. x  e.  A  E. y ph  <->  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
75, 6anbi12i 460 . . 3  |-  ( ( A. x  e.  A  E* y ph  /\  A. x  e.  A  E. y ph )  <->  ( Fun  {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  /\  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A ) )
8 r19.26 2634 . . 3  |-  ( A. x  e.  A  ( E* y ph  /\  E. y ph )  <->  ( A. x  e.  A  E* y ph  /\  A. x  e.  A  E. y ph ) )
9 df-fn 5293 . . 3  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A  <->  ( Fun  {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  /\  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A ) )
107, 8, 93bitr4i 212 . 2  |-  ( A. x  e.  A  ( E* y ph  /\  E. y ph )  <->  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A
)
11 eu5 2103 . . . 4  |-  ( E! y ph  <->  ( E. y ph  /\  E* y ph ) )
12 ancom 266 . . . 4  |-  ( ( E. y ph  /\  E* y ph )  <->  ( E* y ph  /\  E. y ph ) )
1311, 12bitri 184 . . 3  |-  ( E! y ph  <->  ( E* y ph  /\  E. y ph ) )
1413ralbii 2514 . 2  |-  ( A. x  e.  A  E! y ph  <->  A. x  e.  A  ( E* y ph  /\  E. y ph ) )
15 fnopabg.1 . . 3  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }
1615fneq1i 5387 . 2  |-  ( F  Fn  A  <->  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A
)
1710, 14, 163bitr4i 212 1  |-  ( A. x  e.  A  E! y ph  <->  F  Fn  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1516   E!weu 2055   E*wmo 2056    e. wcel 2178   A.wral 2486   {copab 4120   dom cdm 4693   Fun wfun 5284    Fn wfn 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-fun 5292  df-fn 5293
This theorem is referenced by:  fnopab  5420  mptfng  5421  uchoice  6246
  Copyright terms: Public domain W3C validator