ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnopabg Unicode version

Theorem fnopabg 5293
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fnopabg.1  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }
Assertion
Ref Expression
fnopabg  |-  ( A. x  e.  A  E! y ph  <->  F  Fn  A
)
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)    F( x, y)

Proof of Theorem fnopabg
StepHypRef Expression
1 moanimv 2081 . . . . . 6  |-  ( E* y ( x  e.  A  /\  ph )  <->  ( x  e.  A  ->  E* y ph ) )
21albii 1450 . . . . 5  |-  ( A. x E* y ( x  e.  A  /\  ph ) 
<-> 
A. x ( x  e.  A  ->  E* y ph ) )
3 funopab 5205 . . . . 5  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } 
<-> 
A. x E* y
( x  e.  A  /\  ph ) )
4 df-ral 2440 . . . . 5  |-  ( A. x  e.  A  E* y ph  <->  A. x ( x  e.  A  ->  E* y ph ) )
52, 3, 43bitr4ri 212 . . . 4  |-  ( A. x  e.  A  E* y ph  <->  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } )
6 dmopab3 4799 . . . 4  |-  ( A. x  e.  A  E. y ph  <->  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
75, 6anbi12i 456 . . 3  |-  ( ( A. x  e.  A  E* y ph  /\  A. x  e.  A  E. y ph )  <->  ( Fun  {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  /\  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A ) )
8 r19.26 2583 . . 3  |-  ( A. x  e.  A  ( E* y ph  /\  E. y ph )  <->  ( A. x  e.  A  E* y ph  /\  A. x  e.  A  E. y ph ) )
9 df-fn 5173 . . 3  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A  <->  ( Fun  {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  /\  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A ) )
107, 8, 93bitr4i 211 . 2  |-  ( A. x  e.  A  ( E* y ph  /\  E. y ph )  <->  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A
)
11 eu5 2053 . . . 4  |-  ( E! y ph  <->  ( E. y ph  /\  E* y ph ) )
12 ancom 264 . . . 4  |-  ( ( E. y ph  /\  E* y ph )  <->  ( E* y ph  /\  E. y ph ) )
1311, 12bitri 183 . . 3  |-  ( E! y ph  <->  ( E* y ph  /\  E. y ph ) )
1413ralbii 2463 . 2  |-  ( A. x  e.  A  E! y ph  <->  A. x  e.  A  ( E* y ph  /\  E. y ph ) )
15 fnopabg.1 . . 3  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }
1615fneq1i 5264 . 2  |-  ( F  Fn  A  <->  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A
)
1710, 14, 163bitr4i 211 1  |-  ( A. x  e.  A  E! y ph  <->  F  Fn  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1333    = wceq 1335   E.wex 1472   E!weu 2006   E*wmo 2007    e. wcel 2128   A.wral 2435   {copab 4024   dom cdm 4586   Fun wfun 5164    Fn wfn 5165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-fun 5172  df-fn 5173
This theorem is referenced by:  fnopab  5294  mptfng  5295
  Copyright terms: Public domain W3C validator