| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnopabg | Unicode version | ||
| Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
| Ref | Expression |
|---|---|
| fnopabg.1 |
|
| Ref | Expression |
|---|---|
| fnopabg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moanimv 2131 |
. . . . . 6
| |
| 2 | 1 | albii 1494 |
. . . . 5
|
| 3 | funopab 5325 |
. . . . 5
| |
| 4 | df-ral 2491 |
. . . . 5
| |
| 5 | 2, 3, 4 | 3bitr4ri 213 |
. . . 4
|
| 6 | dmopab3 4910 |
. . . 4
| |
| 7 | 5, 6 | anbi12i 460 |
. . 3
|
| 8 | r19.26 2634 |
. . 3
| |
| 9 | df-fn 5293 |
. . 3
| |
| 10 | 7, 8, 9 | 3bitr4i 212 |
. 2
|
| 11 | eu5 2103 |
. . . 4
| |
| 12 | ancom 266 |
. . . 4
| |
| 13 | 11, 12 | bitri 184 |
. . 3
|
| 14 | 13 | ralbii 2514 |
. 2
|
| 15 | fnopabg.1 |
. . 3
| |
| 16 | 15 | fneq1i 5387 |
. 2
|
| 17 | 10, 14, 16 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-fun 5292 df-fn 5293 |
| This theorem is referenced by: fnopab 5420 mptfng 5421 uchoice 6246 |
| Copyright terms: Public domain | W3C validator |