| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvopab3g | Unicode version | ||
| Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fvopab3g.2 |
|
| fvopab3g.3 |
|
| fvopab3g.4 |
|
| fvopab3g.5 |
|
| Ref | Expression |
|---|---|
| fvopab3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2270 |
. . . 4
| |
| 2 | fvopab3g.2 |
. . . 4
| |
| 3 | 1, 2 | anbi12d 473 |
. . 3
|
| 4 | fvopab3g.3 |
. . . 4
| |
| 5 | 4 | anbi2d 464 |
. . 3
|
| 6 | 3, 5 | opelopabg 4332 |
. 2
|
| 7 | fvopab3g.4 |
. . . . . 6
| |
| 8 | fvopab3g.5 |
. . . . . 6
| |
| 9 | 7, 8 | fnopab 5420 |
. . . . 5
|
| 10 | fnopfvb 5643 |
. . . . 5
| |
| 11 | 9, 10 | mpan 424 |
. . . 4
|
| 12 | 8 | eleq2i 2274 |
. . . 4
|
| 13 | 11, 12 | bitrdi 196 |
. . 3
|
| 14 | 13 | adantr 276 |
. 2
|
| 15 | ibar 301 |
. . 3
| |
| 16 | 15 | adantr 276 |
. 2
|
| 17 | 6, 14, 16 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: recmulnqg 7539 |
| Copyright terms: Public domain | W3C validator |