ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnopab GIF version

Theorem fnopab 5448
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996.)
Hypotheses
Ref Expression
fnopab.1 (𝑥𝐴 → ∃!𝑦𝜑)
fnopab.2 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
Assertion
Ref Expression
fnopab 𝐹 Fn 𝐴
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fnopab
StepHypRef Expression
1 fnopab.1 . . 3 (𝑥𝐴 → ∃!𝑦𝜑)
21rgen 2583 . 2 𝑥𝐴 ∃!𝑦𝜑
3 fnopab.2 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
43fnopabg 5447 . 2 (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
52, 4mpbi 145 1 𝐹 Fn 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  ∃!weu 2077  wcel 2200  wral 2508  {copab 4144   Fn wfn 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-fun 5320  df-fn 5321
This theorem is referenced by:  fvopab3g  5709
  Copyright terms: Public domain W3C validator