ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass5 Unicode version

Theorem funimass5 5361
Description: A subclass of a preimage in terms of function values. (Contributed by NM, 15-May-2007.)
Assertion
Ref Expression
funimass5  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A  C_  ( `' F " B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, F    x, A    x, B

Proof of Theorem funimass5
StepHypRef Expression
1 funimass3 5360 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A 
C_  ( `' F " B ) ) )
2 funimass4 5300 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
31, 2bitr3d 188 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A  C_  ( `' F " B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1434   A.wral 2353    C_ wss 2984   `'ccnv 4400   dom cdm 4401   "cima 4404   Fun wfun 4963   ` cfv 4969
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-sbc 2827  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-fv 4977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator