ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funconstss Unicode version

Theorem funconstss 5584
Description: Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
funconstss  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  ( F `  x )  =  B  <-> 
A  C_  ( `' F " { B }
) ) )
Distinct variable groups:    x, F    x, A    x, B

Proof of Theorem funconstss
StepHypRef Expression
1 funimass4 5518 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  { B } 
<-> 
A. x  e.  A  ( F `  x )  e.  { B }
) )
2 funimass3 5582 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  { B } 
<->  A  C_  ( `' F " { B }
) ) )
3 ssel2 3123 . . . . . 6  |-  ( ( A  C_  dom  F  /\  x  e.  A )  ->  x  e.  dom  F
)
43anim2i 340 . . . . 5  |-  ( ( Fun  F  /\  ( A  C_  dom  F  /\  x  e.  A )
)  ->  ( Fun  F  /\  x  e.  dom  F ) )
54anassrs 398 . . . 4  |-  ( ( ( Fun  F  /\  A  C_  dom  F )  /\  x  e.  A
)  ->  ( Fun  F  /\  x  e.  dom  F ) )
6 funfvex 5484 . . . 4  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
7 elsng 3575 . . . 4  |-  ( ( F `  x )  e.  _V  ->  (
( F `  x
)  e.  { B } 
<->  ( F `  x
)  =  B ) )
85, 6, 73syl 17 . . 3  |-  ( ( ( Fun  F  /\  A  C_  dom  F )  /\  x  e.  A
)  ->  ( ( F `  x )  e.  { B }  <->  ( F `  x )  =  B ) )
98ralbidva 2453 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  ( F `  x )  e.  { B }  <->  A. x  e.  A  ( F `  x )  =  B ) )
101, 2, 93bitr3rd 218 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  ( F `  x )  =  B  <-> 
A  C_  ( `' F " { B }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   A.wral 2435   _Vcvv 2712    C_ wss 3102   {csn 3560   `'ccnv 4584   dom cdm 4585   "cima 4588   Fun wfun 5163   ` cfv 5169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-fv 5177
This theorem is referenced by:  fconst3m  5685
  Copyright terms: Public domain W3C validator