ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmpt Unicode version

Theorem funmpt 5254
Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
funmpt  |-  Fun  (
x  e.  A  |->  B )

Proof of Theorem funmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funopab4 5253 . 2  |-  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
2 df-mpt 4066 . . 3  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
32funeqi 5237 . 2  |-  ( Fun  ( x  e.  A  |->  B )  <->  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) } )
41, 3mpbir 146 1  |-  Fun  (
x  e.  A  |->  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    e. wcel 2148   {copab 4063    |-> cmpt 4064   Fun wfun 5210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-fun 5218
This theorem is referenced by:  funmpt2  5255  fmptco  5682  resfunexg  5737  mptexg  5741  mptexw  6113  brtpos2  6251  tposfun  6260  rdgtfr  6374  rdgruledefgg  6375  rdgon  6386  freccllem  6402  frecfcllem  6404  hashinfom  10757  hashennn  10759  negfi  11235  tgrest  13639  dvrecap  14147  funmptd  14525
  Copyright terms: Public domain W3C validator