ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmpt Unicode version

Theorem funmpt 5236
Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
funmpt  |-  Fun  (
x  e.  A  |->  B )

Proof of Theorem funmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funopab4 5235 . 2  |-  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
2 df-mpt 4052 . . 3  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
32funeqi 5219 . 2  |-  ( Fun  ( x  e.  A  |->  B )  <->  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) } )
41, 3mpbir 145 1  |-  Fun  (
x  e.  A  |->  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   {copab 4049    |-> cmpt 4050   Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-fun 5200
This theorem is referenced by:  funmpt2  5237  fmptco  5662  resfunexg  5717  mptexg  5721  mptexw  6092  brtpos2  6230  tposfun  6239  rdgtfr  6353  rdgruledefgg  6354  rdgon  6365  freccllem  6381  frecfcllem  6383  hashinfom  10712  hashennn  10714  negfi  11191  tgrest  12963  dvrecap  13471  funmptd  13838
  Copyright terms: Public domain W3C validator