ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmpt Unicode version

Theorem funmpt 5256
Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
funmpt  |-  Fun  (
x  e.  A  |->  B )

Proof of Theorem funmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funopab4 5255 . 2  |-  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
2 df-mpt 4068 . . 3  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
32funeqi 5239 . 2  |-  ( Fun  ( x  e.  A  |->  B )  <->  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) } )
41, 3mpbir 146 1  |-  Fun  (
x  e.  A  |->  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    e. wcel 2148   {copab 4065    |-> cmpt 4066   Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-fun 5220
This theorem is referenced by:  funmpt2  5257  fmptco  5684  resfunexg  5739  mptexg  5743  mptexw  6116  brtpos2  6254  tposfun  6263  rdgtfr  6377  rdgruledefgg  6378  rdgon  6389  freccllem  6405  frecfcllem  6407  hashinfom  10760  hashennn  10762  negfi  11238  tgrest  13754  dvrecap  14262  funmptd  14640
  Copyright terms: Public domain W3C validator