ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmpt Unicode version

Theorem funmpt 5306
Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
funmpt  |-  Fun  (
x  e.  A  |->  B )

Proof of Theorem funmpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funopab4 5305 . 2  |-  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
2 df-mpt 4106 . . 3  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
32funeqi 5289 . 2  |-  ( Fun  ( x  e.  A  |->  B )  <->  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) } )
41, 3mpbir 146 1  |-  Fun  (
x  e.  A  |->  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1372    e. wcel 2175   {copab 4103    |-> cmpt 4104   Fun wfun 5262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-fun 5270
This theorem is referenced by:  funmpt2  5307  fmptco  5740  resfunexg  5795  mptexg  5799  mptexw  6188  brtpos2  6327  tposfun  6336  rdgtfr  6450  rdgruledefgg  6451  rdgon  6462  freccllem  6478  frecfcllem  6480  hashinfom  10904  hashennn  10906  negfi  11458  tgrest  14559  dvrecap  15103  funmptd  15603
  Copyright terms: Public domain W3C validator