ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopabeq Unicode version

Theorem funopabeq 5290
Description: A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.)
Assertion
Ref Expression
funopabeq  |-  Fun  { <. x ,  y >.  |  y  =  A }
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem funopabeq
StepHypRef Expression
1 funopab 5289 . 2  |-  ( Fun 
{ <. x ,  y
>.  |  y  =  A }  <->  A. x E* y 
y  =  A )
2 moeq 2935 . 2  |-  E* y 
y  =  A
31, 2mpgbir 1464 1  |-  Fun  { <. x ,  y >.  |  y  =  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1364   E*wmo 2043   {copab 4089   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-fun 5256
This theorem is referenced by:  funopab4  5291
  Copyright terms: Public domain W3C validator