| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funopab4 | GIF version | ||
| Description: A class of ordered pairs of values in the form used by df-mpt 4115 is a function. (Contributed by NM, 17-Feb-2013.) |
| Ref | Expression |
|---|---|
| funopab4 | ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | |
| 2 | 1 | ssopab2i 4332 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} |
| 3 | funopabeq 5316 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} | |
| 4 | funss 5299 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} → (Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} → Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)})) | |
| 5 | 2, 3, 4 | mp2 16 | 1 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ⊆ wss 3170 {copab 4112 Fun wfun 5274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-fun 5282 |
| This theorem is referenced by: funmpt 5318 |
| Copyright terms: Public domain | W3C validator |