![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funopabeq | GIF version |
Description: A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
funopabeq | ⊢ Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab 5270 | . 2 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} ↔ ∀𝑥∃*𝑦 𝑦 = 𝐴) | |
2 | moeq 2927 | . 2 ⊢ ∃*𝑦 𝑦 = 𝐴 | |
3 | 1, 2 | mpgbir 1464 | 1 ⊢ Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∃*wmo 2039 {copab 4078 Fun wfun 5229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-opab 4080 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-fun 5237 |
This theorem is referenced by: funopab4 5272 |
Copyright terms: Public domain | W3C validator |