| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funopabeq | GIF version | ||
| Description: A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.) |
| Ref | Expression |
|---|---|
| funopabeq | ⊢ Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopab 5320 | . 2 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} ↔ ∀𝑥∃*𝑦 𝑦 = 𝐴) | |
| 2 | moeq 2952 | . 2 ⊢ ∃*𝑦 𝑦 = 𝐴 | |
| 3 | 1, 2 | mpgbir 1477 | 1 ⊢ Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∃*wmo 2056 {copab 4115 Fun wfun 5279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-fun 5287 |
| This theorem is referenced by: funopab4 5322 |
| Copyright terms: Public domain | W3C validator |