ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopabeq GIF version

Theorem funopabeq 5282
Description: A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.)
Assertion
Ref Expression
funopabeq Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem funopabeq
StepHypRef Expression
1 funopab 5281 . 2 (Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴} ↔ ∀𝑥∃*𝑦 𝑦 = 𝐴)
2 moeq 2935 . 2 ∃*𝑦 𝑦 = 𝐴
31, 2mpgbir 1464 1 Fun {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  ∃*wmo 2043  {copab 4089  Fun wfun 5240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-fun 5248
This theorem is referenced by:  funopab4  5283
  Copyright terms: Public domain W3C validator