ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodfac Unicode version

Theorem fprodfac 11494
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
fprodfac  |-  ( A  e.  NN0  ->  ( ! `
 A )  = 
prod_ k  e.  (
1 ... A ) k )
Distinct variable group:    A, k

Proof of Theorem fprodfac
Dummy variables  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5465 . . 3  |-  ( w  =  0  ->  ( ! `  w )  =  ( ! ` 
0 ) )
2 oveq2 5826 . . . 4  |-  ( w  =  0  ->  (
1 ... w )  =  ( 1 ... 0
) )
32prodeq1d 11443 . . 3  |-  ( w  =  0  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... 0 ) k )
41, 3eqeq12d 2172 . 2  |-  ( w  =  0  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  0 )  = 
prod_ k  e.  (
1 ... 0 ) k ) )
5 fveq2 5465 . . 3  |-  ( w  =  x  ->  ( ! `  w )  =  ( ! `  x ) )
6 oveq2 5826 . . . 4  |-  ( w  =  x  ->  (
1 ... w )  =  ( 1 ... x
) )
76prodeq1d 11443 . . 3  |-  ( w  =  x  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... x ) k )
85, 7eqeq12d 2172 . 2  |-  ( w  =  x  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k ) )
9 fveq2 5465 . . 3  |-  ( w  =  ( x  + 
1 )  ->  ( ! `  w )  =  ( ! `  ( x  +  1
) ) )
10 oveq2 5826 . . . 4  |-  ( w  =  ( x  + 
1 )  ->  (
1 ... w )  =  ( 1 ... (
x  +  1 ) ) )
1110prodeq1d 11443 . . 3  |-  ( w  =  ( x  + 
1 )  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... ( x  + 
1 ) ) k )
129, 11eqeq12d 2172 . 2  |-  ( w  =  ( x  + 
1 )  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
13 fveq2 5465 . . 3  |-  ( w  =  A  ->  ( ! `  w )  =  ( ! `  A ) )
14 oveq2 5826 . . . 4  |-  ( w  =  A  ->  (
1 ... w )  =  ( 1 ... A
) )
1514prodeq1d 11443 . . 3  |-  ( w  =  A  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... A ) k )
1613, 15eqeq12d 2172 . 2  |-  ( w  =  A  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  A )  =  prod_ k  e.  ( 1 ... A ) k ) )
17 prod0 11464 . . 3  |-  prod_ k  e.  (/)  k  =  1
18 fz10 9930 . . . 4  |-  ( 1 ... 0 )  =  (/)
1918prodeq1i 11440 . . 3  |-  prod_ k  e.  ( 1 ... 0
) k  =  prod_ k  e.  (/)  k
20 fac0 10584 . . 3  |-  ( ! `
 0 )  =  1
2117, 19, 203eqtr4ri 2189 . 2  |-  ( ! `
 0 )  = 
prod_ k  e.  (
1 ... 0 ) k
22 elnn0 9075 . . 3  |-  ( x  e.  NN0  <->  ( x  e.  NN  \/  x  =  0 ) )
23 simpr 109 . . . . . . 7  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )
2423oveq1d 5833 . . . . . 6  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  (
( ! `  x
)  x.  ( x  +  1 ) )  =  ( prod_ k  e.  ( 1 ... x
) k  x.  (
x  +  1 ) ) )
25 nnnn0 9080 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  NN0 )
26 facp1 10586 . . . . . . . . 9  |-  ( x  e.  NN0  ->  ( ! `
 ( x  + 
1 ) )  =  ( ( ! `  x )  x.  (
x  +  1 ) ) )
2725, 26syl 14 . . . . . . . 8  |-  ( x  e.  NN  ->  ( ! `  ( x  +  1 ) )  =  ( ( ! `
 x )  x.  ( x  +  1 ) ) )
28 elnnuz 9458 . . . . . . . . . 10  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
2928biimpi 119 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  ( ZZ>= `  1 )
)
30 elfzelz 9910 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( x  +  1 ) )  ->  k  e.  ZZ )
3130zcnd 9270 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( x  +  1 ) )  ->  k  e.  CC )
3231adantl 275 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  k  e.  ( 1 ... ( x  + 
1 ) ) )  ->  k  e.  CC )
33 id 19 . . . . . . . . 9  |-  ( k  =  ( x  + 
1 )  ->  k  =  ( x  + 
1 ) )
3429, 32, 33fprodp1 11479 . . . . . . . 8  |-  ( x  e.  NN  ->  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k  =  ( prod_ k  e.  ( 1 ... x ) k  x.  ( x  +  1 ) ) )
3527, 34eqeq12d 2172 . . . . . . 7  |-  ( x  e.  NN  ->  (
( ! `  (
x  +  1 ) )  =  prod_ k  e.  ( 1 ... (
x  +  1 ) ) k  <->  ( ( ! `  x )  x.  ( x  +  1 ) )  =  (
prod_ k  e.  (
1 ... x ) k  x.  ( x  + 
1 ) ) ) )
3635adantr 274 . . . . . 6  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  (
( ! `  (
x  +  1 ) )  =  prod_ k  e.  ( 1 ... (
x  +  1 ) ) k  <->  ( ( ! `  x )  x.  ( x  +  1 ) )  =  (
prod_ k  e.  (
1 ... x ) k  x.  ( x  + 
1 ) ) ) )
3724, 36mpbird 166 . . . . 5  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k )
3837ex 114 . . . 4  |-  ( x  e.  NN  ->  (
( ! `  x
)  =  prod_ k  e.  ( 1 ... x
) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
39 1zzd 9177 . . . . . . 7  |-  ( x  =  0  ->  1  e.  ZZ )
40 1cnd 7877 . . . . . . 7  |-  ( x  =  0  ->  1  e.  CC )
41 id 19 . . . . . . . 8  |-  ( k  =  1  ->  k  =  1 )
4241fprod1 11473 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  1  e.  CC )  ->  prod_ k  e.  ( 1 ... 1 ) k  =  1 )
4339, 40, 42syl2anc 409 . . . . . 6  |-  ( x  =  0  ->  prod_ k  e.  ( 1 ... 1 ) k  =  1 )
44 oveq1 5825 . . . . . . . . 9  |-  ( x  =  0  ->  (
x  +  1 )  =  ( 0  +  1 ) )
45 0p1e1 8930 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
4644, 45eqtrdi 2206 . . . . . . . 8  |-  ( x  =  0  ->  (
x  +  1 )  =  1 )
4746oveq2d 5834 . . . . . . 7  |-  ( x  =  0  ->  (
1 ... ( x  + 
1 ) )  =  ( 1 ... 1
) )
4847prodeq1d 11443 . . . . . 6  |-  ( x  =  0  ->  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k  = 
prod_ k  e.  (
1 ... 1 ) k )
49 fv0p1e1 8931 . . . . . . 7  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  ( ! ` 
1 ) )
50 fac1 10585 . . . . . . 7  |-  ( ! `
 1 )  =  1
5149, 50eqtrdi 2206 . . . . . 6  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  1 )
5243, 48, 513eqtr4rd 2201 . . . . 5  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k )
5352a1d 22 . . . 4  |-  ( x  =  0  ->  (
( ! `  x
)  =  prod_ k  e.  ( 1 ... x
) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
5438, 53jaoi 706 . . 3  |-  ( ( x  e.  NN  \/  x  =  0 )  ->  ( ( ! `
 x )  = 
prod_ k  e.  (
1 ... x ) k  ->  ( ! `  ( x  +  1
) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
5522, 54sylbi 120 . 2  |-  ( x  e.  NN0  ->  ( ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
564, 8, 12, 16, 21, 55nn0ind 9261 1  |-  ( A  e.  NN0  ->  ( ! `
 A )  = 
prod_ k  e.  (
1 ... A ) k )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1335    e. wcel 2128   (/)c0 3394   ` cfv 5167  (class class class)co 5818   CCcc 7713   0cc0 7715   1c1 7716    + caddc 7718    x. cmul 7720   NNcn 8816   NN0cn0 9073   ZZcz 9150   ZZ>=cuz 9422   ...cfz 9894   !cfa 10581   prod_cprod 11429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-frec 6332  df-1o 6357  df-oadd 6361  df-er 6473  df-en 6679  df-dom 6680  df-fin 6681  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-fz 9895  df-fzo 10024  df-seqfrec 10327  df-exp 10401  df-fac 10582  df-ihash 10632  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-clim 11158  df-proddc 11430
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator