ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodfac Unicode version

Theorem fprodfac 11780
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
fprodfac  |-  ( A  e.  NN0  ->  ( ! `
 A )  = 
prod_ k  e.  (
1 ... A ) k )
Distinct variable group:    A, k

Proof of Theorem fprodfac
Dummy variables  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5558 . . 3  |-  ( w  =  0  ->  ( ! `  w )  =  ( ! ` 
0 ) )
2 oveq2 5930 . . . 4  |-  ( w  =  0  ->  (
1 ... w )  =  ( 1 ... 0
) )
32prodeq1d 11729 . . 3  |-  ( w  =  0  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... 0 ) k )
41, 3eqeq12d 2211 . 2  |-  ( w  =  0  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  0 )  = 
prod_ k  e.  (
1 ... 0 ) k ) )
5 fveq2 5558 . . 3  |-  ( w  =  x  ->  ( ! `  w )  =  ( ! `  x ) )
6 oveq2 5930 . . . 4  |-  ( w  =  x  ->  (
1 ... w )  =  ( 1 ... x
) )
76prodeq1d 11729 . . 3  |-  ( w  =  x  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... x ) k )
85, 7eqeq12d 2211 . 2  |-  ( w  =  x  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k ) )
9 fveq2 5558 . . 3  |-  ( w  =  ( x  + 
1 )  ->  ( ! `  w )  =  ( ! `  ( x  +  1
) ) )
10 oveq2 5930 . . . 4  |-  ( w  =  ( x  + 
1 )  ->  (
1 ... w )  =  ( 1 ... (
x  +  1 ) ) )
1110prodeq1d 11729 . . 3  |-  ( w  =  ( x  + 
1 )  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... ( x  + 
1 ) ) k )
129, 11eqeq12d 2211 . 2  |-  ( w  =  ( x  + 
1 )  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
13 fveq2 5558 . . 3  |-  ( w  =  A  ->  ( ! `  w )  =  ( ! `  A ) )
14 oveq2 5930 . . . 4  |-  ( w  =  A  ->  (
1 ... w )  =  ( 1 ... A
) )
1514prodeq1d 11729 . . 3  |-  ( w  =  A  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... A ) k )
1613, 15eqeq12d 2211 . 2  |-  ( w  =  A  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  A )  =  prod_ k  e.  ( 1 ... A ) k ) )
17 prod0 11750 . . 3  |-  prod_ k  e.  (/)  k  =  1
18 fz10 10121 . . . 4  |-  ( 1 ... 0 )  =  (/)
1918prodeq1i 11726 . . 3  |-  prod_ k  e.  ( 1 ... 0
) k  =  prod_ k  e.  (/)  k
20 fac0 10820 . . 3  |-  ( ! `
 0 )  =  1
2117, 19, 203eqtr4ri 2228 . 2  |-  ( ! `
 0 )  = 
prod_ k  e.  (
1 ... 0 ) k
22 elnn0 9251 . . 3  |-  ( x  e.  NN0  <->  ( x  e.  NN  \/  x  =  0 ) )
23 simpr 110 . . . . . . 7  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )
2423oveq1d 5937 . . . . . 6  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  (
( ! `  x
)  x.  ( x  +  1 ) )  =  ( prod_ k  e.  ( 1 ... x
) k  x.  (
x  +  1 ) ) )
25 nnnn0 9256 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  NN0 )
26 facp1 10822 . . . . . . . . 9  |-  ( x  e.  NN0  ->  ( ! `
 ( x  + 
1 ) )  =  ( ( ! `  x )  x.  (
x  +  1 ) ) )
2725, 26syl 14 . . . . . . . 8  |-  ( x  e.  NN  ->  ( ! `  ( x  +  1 ) )  =  ( ( ! `
 x )  x.  ( x  +  1 ) ) )
28 elnnuz 9638 . . . . . . . . . 10  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
2928biimpi 120 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  ( ZZ>= `  1 )
)
30 elfzelz 10100 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( x  +  1 ) )  ->  k  e.  ZZ )
3130zcnd 9449 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( x  +  1 ) )  ->  k  e.  CC )
3231adantl 277 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  k  e.  ( 1 ... ( x  + 
1 ) ) )  ->  k  e.  CC )
33 id 19 . . . . . . . . 9  |-  ( k  =  ( x  + 
1 )  ->  k  =  ( x  + 
1 ) )
3429, 32, 33fprodp1 11765 . . . . . . . 8  |-  ( x  e.  NN  ->  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k  =  ( prod_ k  e.  ( 1 ... x ) k  x.  ( x  +  1 ) ) )
3527, 34eqeq12d 2211 . . . . . . 7  |-  ( x  e.  NN  ->  (
( ! `  (
x  +  1 ) )  =  prod_ k  e.  ( 1 ... (
x  +  1 ) ) k  <->  ( ( ! `  x )  x.  ( x  +  1 ) )  =  (
prod_ k  e.  (
1 ... x ) k  x.  ( x  + 
1 ) ) ) )
3635adantr 276 . . . . . 6  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  (
( ! `  (
x  +  1 ) )  =  prod_ k  e.  ( 1 ... (
x  +  1 ) ) k  <->  ( ( ! `  x )  x.  ( x  +  1 ) )  =  (
prod_ k  e.  (
1 ... x ) k  x.  ( x  + 
1 ) ) ) )
3724, 36mpbird 167 . . . . 5  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k )
3837ex 115 . . . 4  |-  ( x  e.  NN  ->  (
( ! `  x
)  =  prod_ k  e.  ( 1 ... x
) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
39 1zzd 9353 . . . . . . 7  |-  ( x  =  0  ->  1  e.  ZZ )
40 1cnd 8042 . . . . . . 7  |-  ( x  =  0  ->  1  e.  CC )
41 id 19 . . . . . . . 8  |-  ( k  =  1  ->  k  =  1 )
4241fprod1 11759 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  1  e.  CC )  ->  prod_ k  e.  ( 1 ... 1 ) k  =  1 )
4339, 40, 42syl2anc 411 . . . . . 6  |-  ( x  =  0  ->  prod_ k  e.  ( 1 ... 1 ) k  =  1 )
44 oveq1 5929 . . . . . . . . 9  |-  ( x  =  0  ->  (
x  +  1 )  =  ( 0  +  1 ) )
45 0p1e1 9104 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
4644, 45eqtrdi 2245 . . . . . . . 8  |-  ( x  =  0  ->  (
x  +  1 )  =  1 )
4746oveq2d 5938 . . . . . . 7  |-  ( x  =  0  ->  (
1 ... ( x  + 
1 ) )  =  ( 1 ... 1
) )
4847prodeq1d 11729 . . . . . 6  |-  ( x  =  0  ->  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k  = 
prod_ k  e.  (
1 ... 1 ) k )
49 fv0p1e1 9105 . . . . . . 7  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  ( ! ` 
1 ) )
50 fac1 10821 . . . . . . 7  |-  ( ! `
 1 )  =  1
5149, 50eqtrdi 2245 . . . . . 6  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  1 )
5243, 48, 513eqtr4rd 2240 . . . . 5  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k )
5352a1d 22 . . . 4  |-  ( x  =  0  ->  (
( ! `  x
)  =  prod_ k  e.  ( 1 ... x
) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
5438, 53jaoi 717 . . 3  |-  ( ( x  e.  NN  \/  x  =  0 )  ->  ( ( ! `
 x )  = 
prod_ k  e.  (
1 ... x ) k  ->  ( ! `  ( x  +  1
) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
5522, 54sylbi 121 . 2  |-  ( x  e.  NN0  ->  ( ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
564, 8, 12, 16, 21, 55nn0ind 9440 1  |-  ( A  e.  NN0  ->  ( ! `
 A )  = 
prod_ k  e.  (
1 ... A ) k )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   (/)c0 3450   ` cfv 5258  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884   NNcn 8990   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083   !cfa 10817   prod_cprod 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716
This theorem is referenced by:  gausslemma2dlem1  15302  gausslemma2dlem6  15308
  Copyright terms: Public domain W3C validator