ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodfac Unicode version

Theorem fprodfac 11761
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
fprodfac  |-  ( A  e.  NN0  ->  ( ! `
 A )  = 
prod_ k  e.  (
1 ... A ) k )
Distinct variable group:    A, k

Proof of Theorem fprodfac
Dummy variables  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5555 . . 3  |-  ( w  =  0  ->  ( ! `  w )  =  ( ! ` 
0 ) )
2 oveq2 5927 . . . 4  |-  ( w  =  0  ->  (
1 ... w )  =  ( 1 ... 0
) )
32prodeq1d 11710 . . 3  |-  ( w  =  0  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... 0 ) k )
41, 3eqeq12d 2208 . 2  |-  ( w  =  0  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  0 )  = 
prod_ k  e.  (
1 ... 0 ) k ) )
5 fveq2 5555 . . 3  |-  ( w  =  x  ->  ( ! `  w )  =  ( ! `  x ) )
6 oveq2 5927 . . . 4  |-  ( w  =  x  ->  (
1 ... w )  =  ( 1 ... x
) )
76prodeq1d 11710 . . 3  |-  ( w  =  x  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... x ) k )
85, 7eqeq12d 2208 . 2  |-  ( w  =  x  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k ) )
9 fveq2 5555 . . 3  |-  ( w  =  ( x  + 
1 )  ->  ( ! `  w )  =  ( ! `  ( x  +  1
) ) )
10 oveq2 5927 . . . 4  |-  ( w  =  ( x  + 
1 )  ->  (
1 ... w )  =  ( 1 ... (
x  +  1 ) ) )
1110prodeq1d 11710 . . 3  |-  ( w  =  ( x  + 
1 )  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... ( x  + 
1 ) ) k )
129, 11eqeq12d 2208 . 2  |-  ( w  =  ( x  + 
1 )  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
13 fveq2 5555 . . 3  |-  ( w  =  A  ->  ( ! `  w )  =  ( ! `  A ) )
14 oveq2 5927 . . . 4  |-  ( w  =  A  ->  (
1 ... w )  =  ( 1 ... A
) )
1514prodeq1d 11710 . . 3  |-  ( w  =  A  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... A ) k )
1613, 15eqeq12d 2208 . 2  |-  ( w  =  A  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  A )  =  prod_ k  e.  ( 1 ... A ) k ) )
17 prod0 11731 . . 3  |-  prod_ k  e.  (/)  k  =  1
18 fz10 10115 . . . 4  |-  ( 1 ... 0 )  =  (/)
1918prodeq1i 11707 . . 3  |-  prod_ k  e.  ( 1 ... 0
) k  =  prod_ k  e.  (/)  k
20 fac0 10802 . . 3  |-  ( ! `
 0 )  =  1
2117, 19, 203eqtr4ri 2225 . 2  |-  ( ! `
 0 )  = 
prod_ k  e.  (
1 ... 0 ) k
22 elnn0 9245 . . 3  |-  ( x  e.  NN0  <->  ( x  e.  NN  \/  x  =  0 ) )
23 simpr 110 . . . . . . 7  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )
2423oveq1d 5934 . . . . . 6  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  (
( ! `  x
)  x.  ( x  +  1 ) )  =  ( prod_ k  e.  ( 1 ... x
) k  x.  (
x  +  1 ) ) )
25 nnnn0 9250 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  NN0 )
26 facp1 10804 . . . . . . . . 9  |-  ( x  e.  NN0  ->  ( ! `
 ( x  + 
1 ) )  =  ( ( ! `  x )  x.  (
x  +  1 ) ) )
2725, 26syl 14 . . . . . . . 8  |-  ( x  e.  NN  ->  ( ! `  ( x  +  1 ) )  =  ( ( ! `
 x )  x.  ( x  +  1 ) ) )
28 elnnuz 9632 . . . . . . . . . 10  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
2928biimpi 120 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  ( ZZ>= `  1 )
)
30 elfzelz 10094 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( x  +  1 ) )  ->  k  e.  ZZ )
3130zcnd 9443 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( x  +  1 ) )  ->  k  e.  CC )
3231adantl 277 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  k  e.  ( 1 ... ( x  + 
1 ) ) )  ->  k  e.  CC )
33 id 19 . . . . . . . . 9  |-  ( k  =  ( x  + 
1 )  ->  k  =  ( x  + 
1 ) )
3429, 32, 33fprodp1 11746 . . . . . . . 8  |-  ( x  e.  NN  ->  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k  =  ( prod_ k  e.  ( 1 ... x ) k  x.  ( x  +  1 ) ) )
3527, 34eqeq12d 2208 . . . . . . 7  |-  ( x  e.  NN  ->  (
( ! `  (
x  +  1 ) )  =  prod_ k  e.  ( 1 ... (
x  +  1 ) ) k  <->  ( ( ! `  x )  x.  ( x  +  1 ) )  =  (
prod_ k  e.  (
1 ... x ) k  x.  ( x  + 
1 ) ) ) )
3635adantr 276 . . . . . 6  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  (
( ! `  (
x  +  1 ) )  =  prod_ k  e.  ( 1 ... (
x  +  1 ) ) k  <->  ( ( ! `  x )  x.  ( x  +  1 ) )  =  (
prod_ k  e.  (
1 ... x ) k  x.  ( x  + 
1 ) ) ) )
3724, 36mpbird 167 . . . . 5  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k )
3837ex 115 . . . 4  |-  ( x  e.  NN  ->  (
( ! `  x
)  =  prod_ k  e.  ( 1 ... x
) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
39 1zzd 9347 . . . . . . 7  |-  ( x  =  0  ->  1  e.  ZZ )
40 1cnd 8037 . . . . . . 7  |-  ( x  =  0  ->  1  e.  CC )
41 id 19 . . . . . . . 8  |-  ( k  =  1  ->  k  =  1 )
4241fprod1 11740 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  1  e.  CC )  ->  prod_ k  e.  ( 1 ... 1 ) k  =  1 )
4339, 40, 42syl2anc 411 . . . . . 6  |-  ( x  =  0  ->  prod_ k  e.  ( 1 ... 1 ) k  =  1 )
44 oveq1 5926 . . . . . . . . 9  |-  ( x  =  0  ->  (
x  +  1 )  =  ( 0  +  1 ) )
45 0p1e1 9098 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
4644, 45eqtrdi 2242 . . . . . . . 8  |-  ( x  =  0  ->  (
x  +  1 )  =  1 )
4746oveq2d 5935 . . . . . . 7  |-  ( x  =  0  ->  (
1 ... ( x  + 
1 ) )  =  ( 1 ... 1
) )
4847prodeq1d 11710 . . . . . 6  |-  ( x  =  0  ->  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k  = 
prod_ k  e.  (
1 ... 1 ) k )
49 fv0p1e1 9099 . . . . . . 7  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  ( ! ` 
1 ) )
50 fac1 10803 . . . . . . 7  |-  ( ! `
 1 )  =  1
5149, 50eqtrdi 2242 . . . . . 6  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  1 )
5243, 48, 513eqtr4rd 2237 . . . . 5  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k )
5352a1d 22 . . . 4  |-  ( x  =  0  ->  (
( ! `  x
)  =  prod_ k  e.  ( 1 ... x
) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
5438, 53jaoi 717 . . 3  |-  ( ( x  e.  NN  \/  x  =  0 )  ->  ( ( ! `
 x )  = 
prod_ k  e.  (
1 ... x ) k  ->  ( ! `  ( x  +  1
) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
5522, 54sylbi 121 . 2  |-  ( x  e.  NN0  ->  ( ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
564, 8, 12, 16, 21, 55nn0ind 9434 1  |-  ( A  e.  NN0  ->  ( ! `
 A )  = 
prod_ k  e.  (
1 ... A ) k )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   (/)c0 3447   ` cfv 5255  (class class class)co 5919   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879   NNcn 8984   NN0cn0 9243   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077   !cfa 10799   prod_cprod 11696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-proddc 11697
This theorem is referenced by:  gausslemma2dlem1  15218  gausslemma2dlem6  15224
  Copyright terms: Public domain W3C validator