ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodfac Unicode version

Theorem fprodfac 11556
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
fprodfac  |-  ( A  e.  NN0  ->  ( ! `
 A )  = 
prod_ k  e.  (
1 ... A ) k )
Distinct variable group:    A, k

Proof of Theorem fprodfac
Dummy variables  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5486 . . 3  |-  ( w  =  0  ->  ( ! `  w )  =  ( ! ` 
0 ) )
2 oveq2 5850 . . . 4  |-  ( w  =  0  ->  (
1 ... w )  =  ( 1 ... 0
) )
32prodeq1d 11505 . . 3  |-  ( w  =  0  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... 0 ) k )
41, 3eqeq12d 2180 . 2  |-  ( w  =  0  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  0 )  = 
prod_ k  e.  (
1 ... 0 ) k ) )
5 fveq2 5486 . . 3  |-  ( w  =  x  ->  ( ! `  w )  =  ( ! `  x ) )
6 oveq2 5850 . . . 4  |-  ( w  =  x  ->  (
1 ... w )  =  ( 1 ... x
) )
76prodeq1d 11505 . . 3  |-  ( w  =  x  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... x ) k )
85, 7eqeq12d 2180 . 2  |-  ( w  =  x  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k ) )
9 fveq2 5486 . . 3  |-  ( w  =  ( x  + 
1 )  ->  ( ! `  w )  =  ( ! `  ( x  +  1
) ) )
10 oveq2 5850 . . . 4  |-  ( w  =  ( x  + 
1 )  ->  (
1 ... w )  =  ( 1 ... (
x  +  1 ) ) )
1110prodeq1d 11505 . . 3  |-  ( w  =  ( x  + 
1 )  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... ( x  + 
1 ) ) k )
129, 11eqeq12d 2180 . 2  |-  ( w  =  ( x  + 
1 )  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
13 fveq2 5486 . . 3  |-  ( w  =  A  ->  ( ! `  w )  =  ( ! `  A ) )
14 oveq2 5850 . . . 4  |-  ( w  =  A  ->  (
1 ... w )  =  ( 1 ... A
) )
1514prodeq1d 11505 . . 3  |-  ( w  =  A  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... A ) k )
1613, 15eqeq12d 2180 . 2  |-  ( w  =  A  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  A )  =  prod_ k  e.  ( 1 ... A ) k ) )
17 prod0 11526 . . 3  |-  prod_ k  e.  (/)  k  =  1
18 fz10 9981 . . . 4  |-  ( 1 ... 0 )  =  (/)
1918prodeq1i 11502 . . 3  |-  prod_ k  e.  ( 1 ... 0
) k  =  prod_ k  e.  (/)  k
20 fac0 10641 . . 3  |-  ( ! `
 0 )  =  1
2117, 19, 203eqtr4ri 2197 . 2  |-  ( ! `
 0 )  = 
prod_ k  e.  (
1 ... 0 ) k
22 elnn0 9116 . . 3  |-  ( x  e.  NN0  <->  ( x  e.  NN  \/  x  =  0 ) )
23 simpr 109 . . . . . . 7  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )
2423oveq1d 5857 . . . . . 6  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  (
( ! `  x
)  x.  ( x  +  1 ) )  =  ( prod_ k  e.  ( 1 ... x
) k  x.  (
x  +  1 ) ) )
25 nnnn0 9121 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  NN0 )
26 facp1 10643 . . . . . . . . 9  |-  ( x  e.  NN0  ->  ( ! `
 ( x  + 
1 ) )  =  ( ( ! `  x )  x.  (
x  +  1 ) ) )
2725, 26syl 14 . . . . . . . 8  |-  ( x  e.  NN  ->  ( ! `  ( x  +  1 ) )  =  ( ( ! `
 x )  x.  ( x  +  1 ) ) )
28 elnnuz 9502 . . . . . . . . . 10  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
2928biimpi 119 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  ( ZZ>= `  1 )
)
30 elfzelz 9960 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( x  +  1 ) )  ->  k  e.  ZZ )
3130zcnd 9314 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( x  +  1 ) )  ->  k  e.  CC )
3231adantl 275 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  k  e.  ( 1 ... ( x  + 
1 ) ) )  ->  k  e.  CC )
33 id 19 . . . . . . . . 9  |-  ( k  =  ( x  + 
1 )  ->  k  =  ( x  + 
1 ) )
3429, 32, 33fprodp1 11541 . . . . . . . 8  |-  ( x  e.  NN  ->  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k  =  ( prod_ k  e.  ( 1 ... x ) k  x.  ( x  +  1 ) ) )
3527, 34eqeq12d 2180 . . . . . . 7  |-  ( x  e.  NN  ->  (
( ! `  (
x  +  1 ) )  =  prod_ k  e.  ( 1 ... (
x  +  1 ) ) k  <->  ( ( ! `  x )  x.  ( x  +  1 ) )  =  (
prod_ k  e.  (
1 ... x ) k  x.  ( x  + 
1 ) ) ) )
3635adantr 274 . . . . . 6  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  (
( ! `  (
x  +  1 ) )  =  prod_ k  e.  ( 1 ... (
x  +  1 ) ) k  <->  ( ( ! `  x )  x.  ( x  +  1 ) )  =  (
prod_ k  e.  (
1 ... x ) k  x.  ( x  + 
1 ) ) ) )
3724, 36mpbird 166 . . . . 5  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k )
3837ex 114 . . . 4  |-  ( x  e.  NN  ->  (
( ! `  x
)  =  prod_ k  e.  ( 1 ... x
) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
39 1zzd 9218 . . . . . . 7  |-  ( x  =  0  ->  1  e.  ZZ )
40 1cnd 7915 . . . . . . 7  |-  ( x  =  0  ->  1  e.  CC )
41 id 19 . . . . . . . 8  |-  ( k  =  1  ->  k  =  1 )
4241fprod1 11535 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  1  e.  CC )  ->  prod_ k  e.  ( 1 ... 1 ) k  =  1 )
4339, 40, 42syl2anc 409 . . . . . 6  |-  ( x  =  0  ->  prod_ k  e.  ( 1 ... 1 ) k  =  1 )
44 oveq1 5849 . . . . . . . . 9  |-  ( x  =  0  ->  (
x  +  1 )  =  ( 0  +  1 ) )
45 0p1e1 8971 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
4644, 45eqtrdi 2215 . . . . . . . 8  |-  ( x  =  0  ->  (
x  +  1 )  =  1 )
4746oveq2d 5858 . . . . . . 7  |-  ( x  =  0  ->  (
1 ... ( x  + 
1 ) )  =  ( 1 ... 1
) )
4847prodeq1d 11505 . . . . . 6  |-  ( x  =  0  ->  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k  = 
prod_ k  e.  (
1 ... 1 ) k )
49 fv0p1e1 8972 . . . . . . 7  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  ( ! ` 
1 ) )
50 fac1 10642 . . . . . . 7  |-  ( ! `
 1 )  =  1
5149, 50eqtrdi 2215 . . . . . 6  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  1 )
5243, 48, 513eqtr4rd 2209 . . . . 5  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k )
5352a1d 22 . . . 4  |-  ( x  =  0  ->  (
( ! `  x
)  =  prod_ k  e.  ( 1 ... x
) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
5438, 53jaoi 706 . . 3  |-  ( ( x  e.  NN  \/  x  =  0 )  ->  ( ( ! `
 x )  = 
prod_ k  e.  (
1 ... x ) k  ->  ( ! `  ( x  +  1
) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
5522, 54sylbi 120 . 2  |-  ( x  e.  NN0  ->  ( ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
564, 8, 12, 16, 21, 55nn0ind 9305 1  |-  ( A  e.  NN0  ->  ( ! `
 A )  = 
prod_ k  e.  (
1 ... A ) k )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   (/)c0 3409   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758   NNcn 8857   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944   !cfa 10638   prod_cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator