ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodfac Unicode version

Theorem fprodfac 12126
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
fprodfac  |-  ( A  e.  NN0  ->  ( ! `
 A )  = 
prod_ k  e.  (
1 ... A ) k )
Distinct variable group:    A, k

Proof of Theorem fprodfac
Dummy variables  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5627 . . 3  |-  ( w  =  0  ->  ( ! `  w )  =  ( ! ` 
0 ) )
2 oveq2 6009 . . . 4  |-  ( w  =  0  ->  (
1 ... w )  =  ( 1 ... 0
) )
32prodeq1d 12075 . . 3  |-  ( w  =  0  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... 0 ) k )
41, 3eqeq12d 2244 . 2  |-  ( w  =  0  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  0 )  = 
prod_ k  e.  (
1 ... 0 ) k ) )
5 fveq2 5627 . . 3  |-  ( w  =  x  ->  ( ! `  w )  =  ( ! `  x ) )
6 oveq2 6009 . . . 4  |-  ( w  =  x  ->  (
1 ... w )  =  ( 1 ... x
) )
76prodeq1d 12075 . . 3  |-  ( w  =  x  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... x ) k )
85, 7eqeq12d 2244 . 2  |-  ( w  =  x  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k ) )
9 fveq2 5627 . . 3  |-  ( w  =  ( x  + 
1 )  ->  ( ! `  w )  =  ( ! `  ( x  +  1
) ) )
10 oveq2 6009 . . . 4  |-  ( w  =  ( x  + 
1 )  ->  (
1 ... w )  =  ( 1 ... (
x  +  1 ) ) )
1110prodeq1d 12075 . . 3  |-  ( w  =  ( x  + 
1 )  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... ( x  + 
1 ) ) k )
129, 11eqeq12d 2244 . 2  |-  ( w  =  ( x  + 
1 )  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
13 fveq2 5627 . . 3  |-  ( w  =  A  ->  ( ! `  w )  =  ( ! `  A ) )
14 oveq2 6009 . . . 4  |-  ( w  =  A  ->  (
1 ... w )  =  ( 1 ... A
) )
1514prodeq1d 12075 . . 3  |-  ( w  =  A  ->  prod_ k  e.  ( 1 ... w ) k  = 
prod_ k  e.  (
1 ... A ) k )
1613, 15eqeq12d 2244 . 2  |-  ( w  =  A  ->  (
( ! `  w
)  =  prod_ k  e.  ( 1 ... w
) k  <->  ( ! `  A )  =  prod_ k  e.  ( 1 ... A ) k ) )
17 prod0 12096 . . 3  |-  prod_ k  e.  (/)  k  =  1
18 fz10 10242 . . . 4  |-  ( 1 ... 0 )  =  (/)
1918prodeq1i 12072 . . 3  |-  prod_ k  e.  ( 1 ... 0
) k  =  prod_ k  e.  (/)  k
20 fac0 10950 . . 3  |-  ( ! `
 0 )  =  1
2117, 19, 203eqtr4ri 2261 . 2  |-  ( ! `
 0 )  = 
prod_ k  e.  (
1 ... 0 ) k
22 elnn0 9371 . . 3  |-  ( x  e.  NN0  <->  ( x  e.  NN  \/  x  =  0 ) )
23 simpr 110 . . . . . . 7  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )
2423oveq1d 6016 . . . . . 6  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  (
( ! `  x
)  x.  ( x  +  1 ) )  =  ( prod_ k  e.  ( 1 ... x
) k  x.  (
x  +  1 ) ) )
25 nnnn0 9376 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  NN0 )
26 facp1 10952 . . . . . . . . 9  |-  ( x  e.  NN0  ->  ( ! `
 ( x  + 
1 ) )  =  ( ( ! `  x )  x.  (
x  +  1 ) ) )
2725, 26syl 14 . . . . . . . 8  |-  ( x  e.  NN  ->  ( ! `  ( x  +  1 ) )  =  ( ( ! `
 x )  x.  ( x  +  1 ) ) )
28 elnnuz 9759 . . . . . . . . . 10  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
2928biimpi 120 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  ( ZZ>= `  1 )
)
30 elfzelz 10221 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( x  +  1 ) )  ->  k  e.  ZZ )
3130zcnd 9570 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( x  +  1 ) )  ->  k  e.  CC )
3231adantl 277 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  k  e.  ( 1 ... ( x  + 
1 ) ) )  ->  k  e.  CC )
33 id 19 . . . . . . . . 9  |-  ( k  =  ( x  + 
1 )  ->  k  =  ( x  + 
1 ) )
3429, 32, 33fprodp1 12111 . . . . . . . 8  |-  ( x  e.  NN  ->  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k  =  ( prod_ k  e.  ( 1 ... x ) k  x.  ( x  +  1 ) ) )
3527, 34eqeq12d 2244 . . . . . . 7  |-  ( x  e.  NN  ->  (
( ! `  (
x  +  1 ) )  =  prod_ k  e.  ( 1 ... (
x  +  1 ) ) k  <->  ( ( ! `  x )  x.  ( x  +  1 ) )  =  (
prod_ k  e.  (
1 ... x ) k  x.  ( x  + 
1 ) ) ) )
3635adantr 276 . . . . . 6  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  (
( ! `  (
x  +  1 ) )  =  prod_ k  e.  ( 1 ... (
x  +  1 ) ) k  <->  ( ( ! `  x )  x.  ( x  +  1 ) )  =  (
prod_ k  e.  (
1 ... x ) k  x.  ( x  + 
1 ) ) ) )
3724, 36mpbird 167 . . . . 5  |-  ( ( x  e.  NN  /\  ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k )  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k )
3837ex 115 . . . 4  |-  ( x  e.  NN  ->  (
( ! `  x
)  =  prod_ k  e.  ( 1 ... x
) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
39 1zzd 9473 . . . . . . 7  |-  ( x  =  0  ->  1  e.  ZZ )
40 1cnd 8162 . . . . . . 7  |-  ( x  =  0  ->  1  e.  CC )
41 id 19 . . . . . . . 8  |-  ( k  =  1  ->  k  =  1 )
4241fprod1 12105 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  1  e.  CC )  ->  prod_ k  e.  ( 1 ... 1 ) k  =  1 )
4339, 40, 42syl2anc 411 . . . . . 6  |-  ( x  =  0  ->  prod_ k  e.  ( 1 ... 1 ) k  =  1 )
44 oveq1 6008 . . . . . . . . 9  |-  ( x  =  0  ->  (
x  +  1 )  =  ( 0  +  1 ) )
45 0p1e1 9224 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
4644, 45eqtrdi 2278 . . . . . . . 8  |-  ( x  =  0  ->  (
x  +  1 )  =  1 )
4746oveq2d 6017 . . . . . . 7  |-  ( x  =  0  ->  (
1 ... ( x  + 
1 ) )  =  ( 1 ... 1
) )
4847prodeq1d 12075 . . . . . 6  |-  ( x  =  0  ->  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k  = 
prod_ k  e.  (
1 ... 1 ) k )
49 fv0p1e1 9225 . . . . . . 7  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  ( ! ` 
1 ) )
50 fac1 10951 . . . . . . 7  |-  ( ! `
 1 )  =  1
5149, 50eqtrdi 2278 . . . . . 6  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  1 )
5243, 48, 513eqtr4rd 2273 . . . . 5  |-  ( x  =  0  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k )
5352a1d 22 . . . 4  |-  ( x  =  0  ->  (
( ! `  x
)  =  prod_ k  e.  ( 1 ... x
) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
5438, 53jaoi 721 . . 3  |-  ( ( x  e.  NN  \/  x  =  0 )  ->  ( ( ! `
 x )  = 
prod_ k  e.  (
1 ... x ) k  ->  ( ! `  ( x  +  1
) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
5522, 54sylbi 121 . 2  |-  ( x  e.  NN0  ->  ( ( ! `  x )  =  prod_ k  e.  ( 1 ... x ) k  ->  ( ! `  ( x  +  1 ) )  =  prod_ k  e.  ( 1 ... ( x  +  1 ) ) k ) )
564, 8, 12, 16, 21, 55nn0ind 9561 1  |-  ( A  e.  NN0  ->  ( ! `
 A )  = 
prod_ k  e.  (
1 ... A ) k )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   (/)c0 3491   ` cfv 5318  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004   NNcn 9110   NN0cn0 9369   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204   !cfa 10947   prod_cprod 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-proddc 12062
This theorem is referenced by:  gausslemma2dlem1  15740  gausslemma2dlem6  15746
  Copyright terms: Public domain W3C validator