![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0p1e1 | Unicode version |
Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
0p1e1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7906 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | addid2i 8102 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 ax-1cn 7906 ax-icn 7908 ax-addcl 7909 ax-mulcl 7911 ax-addcom 7913 ax-i2m1 7918 ax-0id 7921 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 |
This theorem is referenced by: fv0p1e1 9036 zgt0ge1 9313 nn0lt10b 9335 gtndiv 9350 nn0ind-raph 9372 1e0p1 9427 fz01en 10055 fz01or 10113 fz0tp 10124 fz0to3un2pr 10125 elfzonlteqm1 10212 fzo0to2pr 10220 fzo0to3tp 10221 fldiv4p1lem1div2 10307 mulp1mod1 10367 1tonninf 10442 expp1 10529 facp1 10712 faclbnd 10723 bcm1k 10742 bcval5 10745 bcpasc 10748 hash1 10793 binomlem 11493 isumnn0nn 11503 fprodfac 11625 ege2le3 11681 ef4p 11704 eirraplem 11786 p1modz1 11803 nn0o1gt2 11912 pw2dvdslemn 12167 pcfaclem 12349 ennnfonelemjn 12405 exmidunben 12429 lgsne0 14524 012of 14830 2o01f 14831 isomninnlem 14863 iswomninnlem 14882 ismkvnnlem 14885 |
Copyright terms: Public domain | W3C validator |