| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0p1e1 | Unicode version | ||
| Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0p1e1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8060 |
. 2
| |
| 2 | 1 | addlidi 8257 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-17 1552 ax-ial 1560 ax-ext 2191 ax-1cn 8060 ax-icn 8062 ax-addcl 8063 ax-mulcl 8065 ax-addcom 8067 ax-i2m1 8072 ax-0id 8075 |
| This theorem depends on definitions: df-bi 117 df-cleq 2202 df-clel 2205 |
| This theorem is referenced by: fv0p1e1 9193 zgt0ge1 9473 nn0lt10b 9495 gtndiv 9510 nn0ind-raph 9532 1e0p1 9587 fz01en 10217 fz01or 10275 fz0tp 10286 fz0to3un2pr 10287 elfzonlteqm1 10383 fzo0to2pr 10391 fzo0to3tp 10392 fldiv4p1lem1div2 10492 mulp1mod1 10554 1tonninf 10630 expp1 10735 facp1 10919 faclbnd 10930 bcm1k 10949 bcval5 10952 bcpasc 10955 hash1 11000 binomlem 11960 isumnn0nn 11970 fprodfac 12092 ege2le3 12148 ef4p 12171 eirraplem 12254 p1modz1 12271 nn0o1gt2 12382 bitsfzo 12432 pw2dvdslemn 12653 pcfaclem 12838 4sqlem19 12898 2exp16 12926 ennnfonelemjn 12939 exmidunben 12963 gsumfzconst 13844 gsumfzsnfd 13848 dvply1 15404 lgsne0 15682 gausslemma2dlem4 15708 lgsquadlem2 15722 012of 16268 2o01f 16269 isomninnlem 16309 iswomninnlem 16328 ismkvnnlem 16331 |
| Copyright terms: Public domain | W3C validator |