| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0p1e1 | Unicode version | ||
| Description: 0 + 1 = 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0p1e1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8100 |
. 2
| |
| 2 | 1 | addlidi 8297 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-mulcl 8105 ax-addcom 8107 ax-i2m1 8112 ax-0id 8115 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: fv0p1e1 9233 zgt0ge1 9513 nn0lt10b 9535 gtndiv 9550 nn0ind-raph 9572 1e0p1 9627 fz01en 10257 fz01or 10315 fz0tp 10326 fz0to3un2pr 10327 elfzonlteqm1 10424 fzo0to2pr 10432 fzo0to3tp 10433 fldiv4p1lem1div2 10533 mulp1mod1 10595 1tonninf 10671 expp1 10776 facp1 10960 faclbnd 10971 bcm1k 10990 bcval5 10993 bcpasc 10996 hash1 11041 binomlem 12002 isumnn0nn 12012 fprodfac 12134 ege2le3 12190 ef4p 12213 eirraplem 12296 p1modz1 12313 nn0o1gt2 12424 bitsfzo 12474 pw2dvdslemn 12695 pcfaclem 12880 4sqlem19 12940 2exp16 12968 ennnfonelemjn 12981 exmidunben 13005 gsumfzconst 13886 gsumfzsnfd 13890 dvply1 15447 lgsne0 15725 gausslemma2dlem4 15751 lgsquadlem2 15765 wlkl1loop 16079 012of 16386 2o01f 16387 isomninnlem 16428 iswomninnlem 16447 ismkvnnlem 16450 |
| Copyright terms: Public domain | W3C validator |