ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslem2 Unicode version

Theorem mertenslem2 11492
Description: Lemma for mertensabs 11493. (Contributed by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
mertens.1  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )
mertens.2  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A ) )
mertens.3  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
mertens.4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
mertens.5  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
mertens.6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `
 ( k  -  j ) ) ) )
mertens.7  |-  ( ph  ->  seq 0 (  +  ,  K )  e. 
dom 
~~>  )
mertens.8  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
mertens.9  |-  ( ph  ->  E  e.  RR+ )
mertens.10  |-  T  =  { z  |  E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
mertens.11  |-  ( ps  <->  ( s  e.  NN  /\  A. n  e.  ( ZZ>= `  s ) ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
Assertion
Ref Expression
mertenslem2  |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
Distinct variable groups:    j, m, n, s, y, z, B   
j, k, G, m, n, s, y, z    ph, j, k, m, y, z    A, k, m, n, s, y    j, E, k, m, n, s, y, z    j, K, k, m, n, s, y, z    j, F, m, n, y    ps, j, k, m, n, y, z    T, j, k, m, n, y, z    k, H, m, y    ph, n, s
Allowed substitution hints:    ps( s)    A( z,
j)    B( k)    T( s)    F( z, k, s)    H( z, j, n, s)

Proof of Theorem mertenslem2
Dummy variables  t  w  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9515 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9232 . . 3  |-  ( ph  ->  1  e.  ZZ )
3 mertens.9 . . . . 5  |-  ( ph  ->  E  e.  RR+ )
43rphalfcld 9659 . . . 4  |-  ( ph  ->  ( E  /  2
)  e.  RR+ )
5 nn0uz 9514 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
6 0zd 9217 . . . . . 6  |-  ( ph  ->  0  e.  ZZ )
7 eqidd 2171 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( K `  j ) )
8 mertens.2 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A ) )
9 mertens.3 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
109abscld 11138 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  A )  e.  RR )
118, 10eqeltrd 2247 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  e.  RR )
12 mertens.7 . . . . . 6  |-  ( ph  ->  seq 0 (  +  ,  K )  e. 
dom 
~~>  )
135, 6, 7, 11, 12isumrecl 11385 . . . . 5  |-  ( ph  -> 
sum_ j  e.  NN0  ( K `  j )  e.  RR )
149absge0d 11141 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  0  <_  ( abs `  A ) )
1514, 8breqtrrd 4015 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  0  <_  ( K `  j ) )
165, 6, 7, 11, 12, 15isumge0 11386 . . . . 5  |-  ( ph  ->  0  <_  sum_ j  e. 
NN0  ( K `  j ) )
1713, 16ge0p1rpd 9677 . . . 4  |-  ( ph  ->  ( sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  RR+ )
184, 17rpdivcld 9664 . . 3  |-  ( ph  ->  ( ( E  / 
2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  e.  RR+ )
19 eqidd 2171 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  (  seq 0 (  +  ,  G ) `  m
)  =  (  seq 0 (  +  ,  G ) `  m
) )
20 mertens.4 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
21 mertens.5 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
22 mertens.8 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
235, 6, 20, 21, 22isumclim2 11378 . . 3  |-  ( ph  ->  seq 0 (  +  ,  G )  ~~>  sum_ k  e.  NN0  B )
241, 2, 18, 19, 23climi2 11244 . 2  |-  ( ph  ->  E. s  e.  NN  A. m  e.  ( ZZ>= `  s ) ( abs `  ( (  seq 0
(  +  ,  G
) `  m )  -  sum_ k  e.  NN0  B ) )  <  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) ) )
25 eluznn 9552 . . . . . . . 8  |-  ( ( s  e.  NN  /\  m  e.  ( ZZ>= `  s ) )  ->  m  e.  NN )
2620, 21eqeltrd 2247 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
275, 6, 26serf 10423 . . . . . . . . . . . 12  |-  ( ph  ->  seq 0 (  +  ,  G ) : NN0 --> CC )
28 nnnn0 9135 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  m  e.  NN0 )
29 ffvelrn 5627 . . . . . . . . . . . 12  |-  ( (  seq 0 (  +  ,  G ) : NN0 --> CC  /\  m  e.  NN0 )  ->  (  seq 0 (  +  ,  G ) `  m
)  e.  CC )
3027, 28, 29syl2an 287 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  (  seq 0 (  +  ,  G ) `  m
)  e.  CC )
315, 6, 20, 21, 22isumcl 11381 . . . . . . . . . . . 12  |-  ( ph  -> 
sum_ k  e.  NN0  B  e.  CC )
3231adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  NN0  B  e.  CC )
3330, 32abssubd 11150 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( abs `  ( (  seq 0
(  +  ,  G
) `  m )  -  sum_ k  e.  NN0  B ) )  =  ( abs `  ( sum_ k  e.  NN0  B  -  (  seq 0 (  +  ,  G ) `  m ) ) ) )
34 eqid 2170 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  ( m  +  1
) )  =  (
ZZ>= `  ( m  + 
1 ) )
3528adantl 275 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  m  e. 
NN0 )
36 peano2nn0 9168 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN0  ->  ( m  +  1 )  e. 
NN0 )
3735, 36syl 14 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( m  +  1 )  e. 
NN0 )
3837nn0zd 9325 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( m  +  1 )  e.  ZZ )
39 simpll 524 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( ZZ>= `  ( m  +  1 ) ) )  ->  ph )
40 eluznn0 9551 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( m  +  1
) ) )  -> 
k  e.  NN0 )
4137, 40sylan 281 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( ZZ>= `  ( m  +  1 ) ) )  ->  k  e.  NN0 )
4239, 41, 20syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( ZZ>= `  ( m  +  1 ) ) )  ->  ( G `  k )  =  B )
4339, 41, 21syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( ZZ>= `  ( m  +  1 ) ) )  ->  B  e.  CC )
4422adantr 274 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  seq 0
(  +  ,  G
)  e.  dom  ~~>  )
4526adantlr 474 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
465, 37, 45iserex 11295 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  (  seq 0 (  +  ,  G )  e.  dom  ~~>  <->  seq ( m  +  1
) (  +  ,  G )  e.  dom  ~~>  ) )
4744, 46mpbid 146 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  seq (
m  +  1 ) (  +  ,  G
)  e.  dom  ~~>  )
4834, 38, 42, 43, 47isumcl 11381 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) B  e.  CC )
4930, 48pncan2d 8225 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( (  seq 0 (  +  ,  G ) `
 m )  + 
sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) B )  -  (  seq 0 (  +  ,  G ) `  m
) )  =  sum_ k  e.  ( ZZ>= `  ( m  +  1
) ) B )
5020adantlr 474 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
5121adantlr 474 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  NN0 )  ->  B  e.  CC )
525, 34, 37, 50, 51, 44isumsplit 11447 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  NN0  B  =  (
sum_ k  e.  ( 0 ... ( ( m  +  1 )  -  1 ) ) B  +  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) B ) )
53 nncn 8879 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  m  e.  CC )
5453adantl 275 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  CC )
55 ax-1cn 7860 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
56 pncan 8118 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  CC  /\  1  e.  CC )  ->  ( ( m  + 
1 )  -  1 )  =  m )
5754, 55, 56sylancl 411 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( m  +  1 )  -  1 )  =  m )
5857oveq2d 5867 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0 ... ( ( m  +  1 )  - 
1 ) )  =  ( 0 ... m
) )
5958sumeq1d 11322 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) B  =  sum_ k  e.  ( 0 ... m ) B )
60 elnn0uz 9517 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
6160, 50sylan2br 286 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( G `  k )  =  B )
6235, 5eleqtrdi 2263 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ( ZZ>= `  0 )
)
6360, 51sylan2br 286 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( ZZ>= `  0 )
)  ->  B  e.  CC )
6461, 62, 63fsum3ser 11353 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  ( 0 ... m
) B  =  (  seq 0 (  +  ,  G ) `  m ) )
6559, 64eqtrd 2203 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) B  =  (  seq 0 (  +  ,  G ) `  m ) )
6665oveq1d 5866 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( sum_ k  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) B  +  sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) B )  =  ( (  seq 0 (  +  ,  G ) `  m )  +  sum_ k  e.  ( ZZ>= `  ( m  +  1
) ) B ) )
6752, 66eqtrd 2203 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  NN0  B  =  ( (  seq 0 (  +  ,  G ) `
 m )  + 
sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) B ) )
6867oveq1d 5866 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( sum_ k  e.  NN0  B  -  (  seq 0 (  +  ,  G ) `  m ) )  =  ( ( (  seq 0 (  +  ,  G ) `  m
)  +  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) B )  -  (  seq 0 (  +  ,  G ) `  m
) ) )
6942sumeq2dv 11324 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) B )
7049, 68, 693eqtr4d 2213 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( sum_ k  e.  NN0  B  -  (  seq 0 (  +  ,  G ) `  m ) )  = 
sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) ( G `  k ) )
7170fveq2d 5498 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( abs `  ( sum_ k  e.  NN0  B  -  (  seq 0
(  +  ,  G
) `  m )
) )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) ( G `  k
) ) )
7233, 71eqtrd 2203 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( abs `  ( (  seq 0
(  +  ,  G
) `  m )  -  sum_ k  e.  NN0  B ) )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) ( G `  k
) ) )
7372breq1d 3997 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( abs `  ( (  seq 0 (  +  ,  G ) `  m )  -  sum_ k  e.  NN0  B ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <->  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
7425, 73sylan2 284 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  NN  /\  m  e.  ( ZZ>= `  s )
) )  ->  (
( abs `  (
(  seq 0 (  +  ,  G ) `  m )  -  sum_ k  e.  NN0  B ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <->  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
7574anassrs 398 . . . . . 6  |-  ( ( ( ph  /\  s  e.  NN )  /\  m  e.  ( ZZ>= `  s )
)  ->  ( ( abs `  ( (  seq 0 (  +  ,  G ) `  m
)  -  sum_ k  e.  NN0  B ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <-> 
( abs `  sum_ k  e.  ( ZZ>= `  ( m  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
7675ralbidva 2466 . . . . 5  |-  ( (
ph  /\  s  e.  NN )  ->  ( A. m  e.  ( ZZ>= `  s ) ( abs `  ( (  seq 0
(  +  ,  G
) `  m )  -  sum_ k  e.  NN0  B ) )  <  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )  <->  A. m  e.  ( ZZ>= `  s )
( abs `  sum_ k  e.  ( ZZ>= `  ( m  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
77 fvoveq1 5874 . . . . . . . . 9  |-  ( m  =  n  ->  ( ZZ>=
`  ( m  + 
1 ) )  =  ( ZZ>= `  ( n  +  1 ) ) )
7877sumeq1d 11322 . . . . . . . 8  |-  ( m  =  n  ->  sum_ k  e.  ( ZZ>= `  ( m  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )
7978fveq2d 5498 . . . . . . 7  |-  ( m  =  n  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) ( G `  k ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
8079breq1d 3997 . . . . . 6  |-  ( m  =  n  ->  (
( abs `  sum_ k  e.  ( ZZ>= `  ( m  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <-> 
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
8180cbvralv 2696 . . . . 5  |-  ( A. m  e.  ( ZZ>= `  s ) ( abs `  sum_ k  e.  (
ZZ>= `  ( m  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <->  A. n  e.  ( ZZ>= `  s )
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
8276, 81bitrdi 195 . . . 4  |-  ( (
ph  /\  s  e.  NN )  ->  ( A. m  e.  ( ZZ>= `  s ) ( abs `  ( (  seq 0
(  +  ,  G
) `  m )  -  sum_ k  e.  NN0  B ) )  <  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )  <->  A. n  e.  ( ZZ>= `  s )
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
83 mertens.11 . . . . . 6  |-  ( ps  <->  ( s  e.  NN  /\  A. n  e.  ( ZZ>= `  s ) ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
84 0zd 9217 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  0  e.  ZZ )
854adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( E  /  2
)  e.  RR+ )
8683simplbi 272 . . . . . . . . . . . . . 14  |-  ( ps 
->  s  e.  NN )
8786adantl 275 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  s  e.  NN )
8887nnrpd 9644 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  s  e.  RR+ )
8985, 88rpdivcld 9664 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( ( E  / 
2 )  /  s
)  e.  RR+ )
9087nnzd 9326 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ps )  ->  s  e.  ZZ )
91 1zzd 9232 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ps )  ->  1  e.  ZZ )
9290, 91zsubcld 9332 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  ( s  -  1 )  e.  ZZ )
9384, 92fzfigd 10380 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( 0 ... (
s  -  1 ) )  e.  Fin )
94 eqid 2170 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  ( n  +  1
) )  =  (
ZZ>= `  ( n  + 
1 ) )
95 elfznn0 10063 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 0 ... ( s  -  1 ) )  ->  n  e.  NN0 )
9695adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  n  e.  NN0 )
97 peano2nn0 9168 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN0  ->  ( n  +  1 )  e. 
NN0 )
9896, 97syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  ( n  +  1 )  e. 
NN0 )
9998nn0zd 9325 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  ( n  +  1 )  e.  ZZ )
100 eqidd 2171 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... (
s  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( G `  k )  =  ( G `  k ) )
101 simplll 528 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... (
s  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ph )
102 eluznn0 9551 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( n  +  1
) ) )  -> 
k  e.  NN0 )
10398, 102sylan 281 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... (
s  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  k  e.  NN0 )
104101, 103, 26syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... (
s  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( G `  k )  e.  CC )
10522ad2antrr 485 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  seq 0
(  +  ,  G
)  e.  dom  ~~>  )
106 simpll 524 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  ph )
107106, 26sylan 281 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... (
s  -  1 ) ) )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
1085, 98, 107iserex 11295 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  (  seq 0 (  +  ,  G )  e.  dom  ~~>  <->  seq ( n  +  1
) (  +  ,  G )  e.  dom  ~~>  ) )
109105, 108mpbid 146 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  seq (
n  +  1 ) (  +  ,  G
)  e.  dom  ~~>  )
11094, 99, 100, 104, 109isumcl 11381 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  e.  CC )
111110abscld 11138 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ps )  /\  n  e.  ( 0 ... ( s  -  1 ) ) )  ->  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  e.  RR )
11293, 111fsumrecl 11357 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  -> 
sum_ n  e.  (
0 ... ( s  - 
1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )  e.  RR )
113 0red 7914 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  0  e.  RR )
114 nnnn0 9135 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  k  e.  NN0 )
115114, 20sylan2 284 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  B )
116114, 21sylan2 284 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  B  e.  CC )
117 1nn0 9144 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  NN0
118117a1i 9 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  1  e.  NN0 )
1195, 118, 26iserex 11295 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  (  seq 0 (  +  ,  G )  e.  dom  ~~>  <->  seq 1
(  +  ,  G
)  e.  dom  ~~>  ) )
12022, 119mpbid 146 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  seq 1 (  +  ,  G )  e. 
dom 
~~>  )
1211, 2, 115, 116, 120isumcl 11381 . . . . . . . . . . . . . . 15  |-  ( ph  -> 
sum_ k  e.  NN  B  e.  CC )
122121adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  NN  B  e.  CC )
123122abscld 11138 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( abs `  sum_ k  e.  NN  B
)  e.  RR )
124122absge0d 11141 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  0  <_  ( abs ` 
sum_ k  e.  NN  B ) )
12520adantlr 474 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ps )  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
12621adantlr 474 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ps )  /\  k  e.  NN0 )  ->  B  e.  CC )
12722adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
128 mertens.10 . . . . . . . . . . . . . 14  |-  T  =  { z  |  E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
129 nnm1nn0 9169 . . . . . . . . . . . . . . . . . . 19  |-  ( s  e.  NN  ->  (
s  -  1 )  e.  NN0 )
13087, 129syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ps )  ->  ( s  -  1 )  e.  NN0 )
131130, 5eleqtrdi 2263 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ps )  ->  ( s  -  1 )  e.  ( ZZ>= ` 
0 ) )
132 eluzfz1 9980 . . . . . . . . . . . . . . . . 17  |-  ( ( s  -  1 )  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... (
s  -  1 ) ) )
133131, 132syl 14 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ps )  ->  0  e.  ( 0 ... ( s  - 
1 ) ) )
134115sumeq2dv 11324 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  -> 
sum_ k  e.  NN  ( G `  k )  =  sum_ k  e.  NN  B )
135134adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  NN  ( G `  k )  =  sum_ k  e.  NN  B )
136135fveq2d 5498 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ps )  ->  ( abs `  sum_ k  e.  NN  ( G `  k )
)  =  ( abs `  sum_ k  e.  NN  B ) )
137136eqcomd 2176 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ps )  ->  ( abs `  sum_ k  e.  NN  B
)  =  ( abs `  sum_ k  e.  NN  ( G `  k ) ) )
138 fv0p1e1 8986 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  0  ->  ( ZZ>=
`  ( n  + 
1 ) )  =  ( ZZ>= `  1 )
)
139138, 1eqtr4di 2221 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  0  ->  ( ZZ>=
`  ( n  + 
1 ) )  =  NN )
140139sumeq1d 11322 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  0  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  =  sum_ k  e.  NN  ( G `  k ) )
141140fveq2d 5498 . . . . . . . . . . . . . . . . 17  |-  ( n  =  0  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  =  ( abs `  sum_ k  e.  NN  ( G `  k ) ) )
142141rspceeqv 2852 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  ( 0 ... ( s  - 
1 ) )  /\  ( abs `  sum_ k  e.  NN  B )  =  ( abs `  sum_ k  e.  NN  ( G `  k )
) )  ->  E. n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  NN  B
)  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
143133, 137, 142syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ps )  ->  E. n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ k  e.  NN  B
)  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
144 eqeq1 2177 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( abs `  sum_ k  e.  NN  B
)  ->  ( z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <-> 
( abs `  sum_ k  e.  NN  B
)  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) ) )
145144rexbidv 2471 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( abs `  sum_ k  e.  NN  B
)  ->  ( E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. n  e.  (
0 ... ( s  - 
1 ) ) ( abs `  sum_ k  e.  NN  B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
146145, 128elab2g 2877 . . . . . . . . . . . . . . . 16  |-  ( ( abs `  sum_ k  e.  NN  B )  e.  RR  ->  ( ( abs `  sum_ k  e.  NN  B )  e.  T  <->  E. n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ k  e.  NN  B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
147123, 146syl 14 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ps )  ->  ( ( abs `  sum_ k  e.  NN  B
)  e.  T  <->  E. n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  NN  B
)  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) ) )
148143, 147mpbird 166 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  ( abs `  sum_ k  e.  NN  B
)  e.  T )
149125, 126, 127, 128, 148, 87mertenslemub 11490 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( abs `  sum_ k  e.  NN  B
)  <_  sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
150113, 123, 112, 124, 149letrd 8036 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  0  <_  sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
151112, 150ge0p1rpd 9677 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  +  1 )  e.  RR+ )
15289, 151rpdivcld 9664 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( ( ( E  /  2 )  / 
s )  /  ( sum_ n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )  +  1 ) )  e.  RR+ )
153 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ps )  /\  m  e.  NN0 )  ->  m  e.  NN0 )
154 fveq2 5494 . . . . . . . . . . . . 13  |-  ( j  =  m  ->  ( K `  j )  =  ( K `  m ) )
155154eleq1d 2239 . . . . . . . . . . . 12  |-  ( j  =  m  ->  (
( K `  j
)  e.  RR  <->  ( K `  m )  e.  RR ) )
15611ralrimiva 2543 . . . . . . . . . . . . 13  |-  ( ph  ->  A. j  e.  NN0  ( K `  j )  e.  RR )
157156ad2antrr 485 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ps )  /\  m  e.  NN0 )  ->  A. j  e.  NN0  ( K `  j )  e.  RR )
158155, 157, 153rspcdva 2839 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ps )  /\  m  e.  NN0 )  ->  ( K `  m )  e.  RR )
159 fveq2 5494 . . . . . . . . . . . 12  |-  ( n  =  m  ->  ( K `  n )  =  ( K `  m ) )
160 eqid 2170 . . . . . . . . . . . 12  |-  ( n  e.  NN0  |->  ( K `
 n ) )  =  ( n  e. 
NN0  |->  ( K `  n ) )
161159, 160fvmptg 5570 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  ( K `  m )  e.  RR )  -> 
( ( n  e. 
NN0  |->  ( K `  n ) ) `  m )  =  ( K `  m ) )
162153, 158, 161syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ph  /\  ps )  /\  m  e.  NN0 )  ->  ( ( n  e.  NN0  |->  ( K `
 n ) ) `
 m )  =  ( K `  m
) )
163 nn0ex 9134 . . . . . . . . . . . . . 14  |-  NN0  e.  _V
164163mptex 5720 . . . . . . . . . . . . 13  |-  ( n  e.  NN0  |->  ( K `
 n ) )  e.  _V
165164a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  ( n  e.  NN0  |->  ( K `  n ) )  e.  _V )
16660biimpri 132 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
167 fveq2 5494 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  k  ->  ( K `  j )  =  ( K `  k ) )
168167eleq1d 2239 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  k  ->  (
( K `  j
)  e.  RR  <->  ( K `  k )  e.  RR ) )
169156adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN0 )  ->  A. j  e.  NN0  ( K `  j )  e.  RR )
170 simpr 109 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
171168, 169, 170rspcdva 2839 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( K `  k )  e.  RR )
17260, 171sylan2br 286 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( K `  k )  e.  RR )
173 fveq2 5494 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  ( K `  n )  =  ( K `  k ) )
174173, 160fvmptg 5570 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN0  /\  ( K `  k )  e.  RR )  -> 
( ( n  e. 
NN0  |->  ( K `  n ) ) `  k )  =  ( K `  k ) )
175166, 172, 174syl2an2 589 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( (
n  e.  NN0  |->  ( K `
 n ) ) `
 k )  =  ( K `  k
) )
176175, 172eqeltrd 2247 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( (
n  e.  NN0  |->  ( K `
 n ) ) `
 k )  e.  RR )
177 elnn0uz 9517 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  <->  j  e.  (
ZZ>= `  0 ) )
178 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  NN0 )
179 fveq2 5494 . . . . . . . . . . . . . . . . 17  |-  ( n  =  j  ->  ( K `  n )  =  ( K `  j ) )
180179, 160fvmptg 5570 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  NN0  /\  ( K `  j )  e.  RR )  -> 
( ( n  e. 
NN0  |->  ( K `  n ) ) `  j )  =  ( K `  j ) )
181178, 11, 180syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( K `
 n ) ) `
 j )  =  ( K `  j
) )
182177, 181sylan2br 286 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  ( ZZ>= `  0 )
)  ->  ( (
n  e.  NN0  |->  ( K `
 n ) ) `
 j )  =  ( K `  j
) )
183 readdcl 7893 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  y  e.  RR )  ->  ( k  +  y )  e.  RR )
184183adantl 275 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  RR  /\  y  e.  RR ) )  -> 
( k  +  y )  e.  RR )
1856, 176, 182, 184seq3feq 10421 . . . . . . . . . . . . 13  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( K `  n ) ) )  =  seq 0 (  +  ,  K ) )
186185, 12eqeltrd 2247 . . . . . . . . . . . 12  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( K `  n ) ) )  e.  dom  ~~>  )
187181, 11eqeltrd 2247 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( K `
 n ) ) `
 j )  e.  RR )
188187recnd 7941 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( K `
 n ) ) `
 j )  e.  CC )
1895, 6, 165, 186, 188serf0 11308 . . . . . . . . . . 11  |-  ( ph  ->  ( n  e.  NN0  |->  ( K `  n ) )  ~~>  0 )
190189adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( n  e.  NN0  |->  ( K `  n ) )  ~~>  0 )
1915, 84, 152, 162, 190climi0 11245 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  E. t  e.  NN0  A. m  e.  ( ZZ>= `  t ) ( abs `  ( K `  m
) )  <  (
( ( E  / 
2 )  /  s
)  /  ( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  +  1 ) ) )
192 fveq2 5494 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  a  ->  ( G `  k )  =  ( G `  a ) )
193192cbvsumv 11317 . . . . . . . . . . . . . . . . 17  |-  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  =  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
)
194193fveq2i 5497 . . . . . . . . . . . . . . . 16  |-  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  =  ( abs `  sum_ a  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  a ) )
195194a1i 9 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 0 ... ( s  -  1 ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  =  ( abs `  sum_ a  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  a ) ) )
196195sumeq2i 11320 . . . . . . . . . . . . . 14  |-  sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  =  sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )
197196oveq1i 5861 . . . . . . . . . . . . 13  |-  ( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  +  1 )  =  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 )
198197oveq2i 5862 . . . . . . . . . . . 12  |-  ( ( ( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  +  1 ) )  =  ( ( ( E  /  2 )  /  s )  / 
( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) )
199198breq2i 3995 . . . . . . . . . . 11  |-  ( ( abs `  ( K `
 m ) )  <  ( ( ( E  /  2 )  /  s )  / 
( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  +  1 ) )  <-> 
( abs `  ( K `  m )
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) )
200199ralbii 2476 . . . . . . . . . 10  |-  ( A. m  e.  ( ZZ>= `  t ) ( abs `  ( K `  m
) )  <  (
( ( E  / 
2 )  /  s
)  /  ( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  +  1 ) )  <->  A. m  e.  (
ZZ>= `  t ) ( abs `  ( K `
 m ) )  <  ( ( ( E  /  2 )  /  s )  / 
( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) )
201200rexbii 2477 . . . . . . . . 9  |-  ( E. t  e.  NN0  A. m  e.  ( ZZ>= `  t )
( abs `  ( K `  m )
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  +  1 ) )  <->  E. t  e.  NN0  A. m  e.  ( ZZ>= `  t ) ( abs `  ( K `  m
) )  <  (
( ( E  / 
2 )  /  s
)  /  ( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ a  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  a ) )  +  1 ) ) )
202191, 201sylib 121 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  E. t  e.  NN0  A. m  e.  ( ZZ>= `  t ) ( abs `  ( K `  m
) )  <  (
( ( E  / 
2 )  /  s
)  /  ( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ a  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  a ) )  +  1 ) ) )
203 simplll 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  /\  m  e.  ( ZZ>= `  t )
)  ->  ph )
204 eluznn0 9551 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  NN0  /\  m  e.  ( ZZ>= `  t ) )  ->  m  e.  NN0 )
205204adantll 473 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  /\  m  e.  ( ZZ>= `  t )
)  ->  m  e.  NN0 )
20611, 15absidd 11124 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  ( K `  j
) )  =  ( K `  j ) )
207206ralrimiva 2543 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. j  e.  NN0  ( abs `  ( K `
 j ) )  =  ( K `  j ) )
208154fveq2d 5498 . . . . . . . . . . . . . . . . 17  |-  ( j  =  m  ->  ( abs `  ( K `  j ) )  =  ( abs `  ( K `  m )
) )
209208, 154eqeq12d 2185 . . . . . . . . . . . . . . . 16  |-  ( j  =  m  ->  (
( abs `  ( K `  j )
)  =  ( K `
 j )  <->  ( abs `  ( K `  m
) )  =  ( K `  m ) ) )
210209rspccva 2833 . . . . . . . . . . . . . . 15  |-  ( ( A. j  e.  NN0  ( abs `  ( K `
 j ) )  =  ( K `  j )  /\  m  e.  NN0 )  ->  ( abs `  ( K `  m ) )  =  ( K `  m
) )
211207, 210sylan 281 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( abs `  ( K `  m
) )  =  ( K `  m ) )
212203, 205, 211syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  /\  m  e.  ( ZZ>= `  t )
)  ->  ( abs `  ( K `  m
) )  =  ( K `  m ) )
213212breq1d 3997 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  /\  m  e.  ( ZZ>= `  t )
)  ->  ( ( abs `  ( K `  m ) )  < 
( ( ( E  /  2 )  / 
s )  /  ( sum_ n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) )  +  1 ) )  <->  ( K `  m )  <  (
( ( E  / 
2 )  /  s
)  /  ( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ a  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  a ) )  +  1 ) ) ) )
214213ralbidva 2466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  ->  ( A. m  e.  ( ZZ>= `  t )
( abs `  ( K `  m )
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) )  <->  A. m  e.  ( ZZ>=
`  t ) ( K `  m )  <  ( ( ( E  /  2 )  /  s )  / 
( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )
215 nfv 1521 . . . . . . . . . . . 12  |-  F/ m
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) )
216 nfcv 2312 . . . . . . . . . . . . 13  |-  F/_ n
( K `  m
)
217 nfcv 2312 . . . . . . . . . . . . 13  |-  F/_ n  <
218 nfcv 2312 . . . . . . . . . . . . . 14  |-  F/_ n
( ( E  / 
2 )  /  s
)
219 nfcv 2312 . . . . . . . . . . . . . 14  |-  F/_ n  /
220 nfcv 2312 . . . . . . . . . . . . . . . 16  |-  F/_ n
( 0 ... (
s  -  1 ) )
221220nfsum1 11312 . . . . . . . . . . . . . . 15  |-  F/_ n sum_ n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) )
222 nfcv 2312 . . . . . . . . . . . . . . 15  |-  F/_ n  +
223 nfcv 2312 . . . . . . . . . . . . . . 15  |-  F/_ n
1
224221, 222, 223nfov 5881 . . . . . . . . . . . . . 14  |-  F/_ n
( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 )
225218, 219, 224nfov 5881 . . . . . . . . . . . . 13  |-  F/_ n
( ( ( E  /  2 )  / 
s )  /  ( sum_ n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) )  +  1 ) )
226216, 217, 225nfbr 4033 . . . . . . . . . . . 12  |-  F/ n
( K `  m
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) )
227159breq1d 3997 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) )  <-> 
( K `  m
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )
228215, 226, 227cbvral 2692 . . . . . . . . . . 11  |-  ( A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sum_ n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) )  +  1 ) )  <->  A. m  e.  ( ZZ>= `  t )
( K `  m
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) )
229214, 228bitr4di 197 . . . . . . . . . 10  |-  ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  ->  ( A. m  e.  ( ZZ>= `  t )
( abs `  ( K `  m )
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) )  <->  A. n  e.  ( ZZ>=
`  t ) ( K `  n )  <  ( ( ( E  /  2 )  /  s )  / 
( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )
230 simpll 524 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )  ->  ph )
231 mertens.1 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )
232230, 231sylan 281 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ps )  /\  (
t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sum_ n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) )  +  1 ) ) ) )  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )
233230, 8sylan 281 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ps )  /\  (
t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sum_ n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) )  +  1 ) ) ) )  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A ) )
234230, 9sylan 281 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ps )  /\  (
t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sum_ n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) )  +  1 ) ) ) )  /\  j  e.  NN0 )  ->  A  e.  CC )
235230, 20sylan 281 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ps )  /\  (
t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sum_ n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) )  +  1 ) ) ) )  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
236230, 21sylan 281 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ps )  /\  (
t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sum_ n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) )  +  1 ) ) ) )  /\  k  e.  NN0 )  ->  B  e.  CC )
237 mertens.6 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `
 ( k  -  j ) ) ) )
238230, 237sylan 281 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ps )  /\  (
t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sum_ n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) )  +  1 ) ) ) )  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `
 ( k  -  j ) ) ) )
23912ad2antrr 485 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )  ->  seq 0 (  +  ,  K )  e.  dom  ~~>  )
24022ad2antrr 485 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )
2413ad2antrr 485 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )  ->  E  e.  RR+ )
242196, 112eqeltrrid 2258 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  -> 
sum_ n  e.  (
0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) )  e.  RR )
243242adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )  ->  sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  e.  RR )
244228anbi2i 454 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t ) ( K `
 n )  < 
( ( ( E  /  2 )  / 
s )  /  ( sum_ n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) )  +  1 ) ) )  <->  ( t  e.  NN0  /\  A. m  e.  ( ZZ>= `  t )
( K `  m
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )
245244anbi2i 454 . . . . . . . . . . . . . 14  |-  ( ( ps  /\  ( t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )  <->  ( ps  /\  ( t  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  t ) ( K `  m )  <  ( ( ( E  /  2 )  /  s )  / 
( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) ) )
246245biimpi 119 . . . . . . . . . . . . 13  |-  ( ( ps  /\  ( t  e.  NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )  ->  ( ps  /\  ( t  e. 
NN0  /\  A. m  e.  ( ZZ>= `  t )
( K `  m
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) ) )
247246adantll 473 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )  ->  ( ps  /\  ( t  e. 
NN0  /\  A. m  e.  ( ZZ>= `  t )
( K `  m
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) ) )
248150, 196breqtrdi 4028 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  0  <_  sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) ) )
249248adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )  ->  0  <_ 
sum_ n  e.  (
0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) ) )
250 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ps )  /\  w  e.  T )  /\  a  e.  NN0 )  ->  a  e.  NN0 )
25120ralrimiva 2543 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. k  e.  NN0  ( G `  k )  =  B )
252251ad3antrrr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ps )  /\  w  e.  T )  /\  a  e.  NN0 )  ->  A. k  e.  NN0  ( G `  k )  =  B )
253 nfcsb1v 3082 . . . . . . . . . . . . . . . . . 18  |-  F/_ k [_ a  /  k ]_ B
254253nfeq2 2324 . . . . . . . . . . . . . . . . 17  |-  F/ k ( G `  a
)  =  [_ a  /  k ]_ B
255 csbeq1a 3058 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  a  ->  B  =  [_ a  /  k ]_ B )
256192, 255eqeq12d 2185 . . . . . . . . . . . . . . . . 17  |-  ( k  =  a  ->  (
( G `  k
)  =  B  <->  ( G `  a )  =  [_ a  /  k ]_ B
) )
257254, 256rspc 2828 . . . . . . . . . . . . . . . 16  |-  ( a  e.  NN0  ->  ( A. k  e.  NN0  ( G `
 k )  =  B  ->  ( G `  a )  =  [_ a  /  k ]_ B
) )
258250, 252, 257sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ps )  /\  w  e.  T )  /\  a  e.  NN0 )  ->  ( G `  a )  =  [_ a  /  k ]_ B )
25921ralrimiva 2543 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. k  e.  NN0  B  e.  CC )
260259ad3antrrr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ps )  /\  w  e.  T )  /\  a  e.  NN0 )  ->  A. k  e.  NN0  B  e.  CC )
261253nfel1 2323 . . . . . . . . . . . . . . . . 17  |-  F/ k
[_ a  /  k ]_ B  e.  CC
262255eleq1d 2239 . . . . . . . . . . . . . . . . 17  |-  ( k  =  a  ->  ( B  e.  CC  <->  [_ a  / 
k ]_ B  e.  CC ) )
263261, 262rspc 2828 . . . . . . . . . . . . . . . 16  |-  ( a  e.  NN0  ->  ( A. k  e.  NN0  B  e.  CC  ->  [_ a  / 
k ]_ B  e.  CC ) )
264250, 260, 263sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ps )  /\  w  e.  T )  /\  a  e.  NN0 )  ->  [_ a  /  k ]_ B  e.  CC )
26522ad2antrr 485 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ps )  /\  w  e.  T
)  ->  seq 0
(  +  ,  G
)  e.  dom  ~~>  )
266194eqeq2i 2181 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <-> 
z  =  ( abs `  sum_ a  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  a ) ) )
267266rexbii 2477 . . . . . . . . . . . . . . . . 17  |-  ( E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. n  e.  (
0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) ) )
268267abbii 2286 . . . . . . . . . . . . . . . 16  |-  { z  |  E. n  e.  ( 0 ... (
s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) }  =  { z  |  E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) ) }
269128, 268eqtri 2191 . . . . . . . . . . . . . . 15  |-  T  =  { z  |  E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) ) }
270 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ps )  /\  w  e.  T
)  ->  w  e.  T )
27187adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ps )  /\  w  e.  T
)  ->  s  e.  NN )
272258, 264, 265, 269, 270, 271mertenslemub 11490 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ps )  /\  w  e.  T
)  ->  w  <_  sum_
n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) ) )
273272ralrimiva 2543 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  A. w  e.  T  w  <_  sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) ) )
274273adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )  ->  A. w  e.  T  w  <_  sum_
n  e.  ( 0 ... ( s  - 
1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  a
) ) )
275232, 233, 234, 235, 236, 238, 239, 240, 241, 128, 83, 243, 247, 249, 274mertenslemi1 11491 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ps )  /\  ( t  e. 
NN0  /\  A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) ) ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E )
276275expr 373 . . . . . . . . . 10  |-  ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  ->  ( A. n  e.  ( ZZ>= `  t )
( K `  n
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E ) )
277229, 276sylbid 149 . . . . . . . . 9  |-  ( ( ( ph  /\  ps )  /\  t  e.  NN0 )  ->  ( A. m  e.  ( ZZ>= `  t )
( abs `  ( K `  m )
)  <  ( (
( E  /  2
)  /  s )  /  ( sum_ n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E ) )
278277rexlimdva 2587 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( E. t  e. 
NN0  A. m  e.  (
ZZ>= `  t ) ( abs `  ( K `
 m ) )  <  ( ( ( E  /  2 )  /  s )  / 
( sum_ n  e.  ( 0 ... ( s  -  1 ) ) ( abs `  sum_ a  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 a ) )  +  1 ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E ) )
279202, 278mpd 13 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
280279ex 114 . . . . . 6  |-  ( ph  ->  ( ps  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E ) )
28183, 280syl5bir 152 . . . . 5  |-  ( ph  ->  ( ( s  e.  NN  /\  A. n  e.  ( ZZ>= `  s )
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E ) )
282281expdimp 257 . . . 4  |-  ( (
ph  /\  s  e.  NN )  ->  ( A. n  e.  ( ZZ>= `  s ) ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E ) )
28382, 282sylbid 149 . . 3  |-  ( (
ph  /\  s  e.  NN )  ->  ( A. m  e.  ( ZZ>= `  s ) ( abs `  ( (  seq 0
(  +  ,  G
) `  m )  -  sum_ k  e.  NN0  B ) )  <  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E ) )
284283rexlimdva 2587 . 2  |-  ( ph  ->  ( E. s  e.  NN  A. m  e.  ( ZZ>= `  s )
( abs `  (
(  seq 0 (  +  ,  G ) `  m )  -  sum_ k  e.  NN0  B ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E ) )
28524, 284mpd 13 1  |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   _Vcvv 2730   [_csb 3049   class class class wbr 3987    |-> cmpt 4048   dom cdm 4609   -->wf 5192   ` cfv 5196  (class class class)co 5851   CCcc 7765   RRcr 7766   0cc0 7767   1c1 7768    + caddc 7770    x. cmul 7772    < clt 7947    <_ cle 7948    - cmin 8083    / cdiv 8582   NNcn 8871   2c2 8922   NN0cn0 9128   ZZ>=cuz 9480   RR+crp 9603   ...cfz 9958    seqcseq 10394   abscabs 10954    ~~> cli 11234   sum_csu 11309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886  ax-caucvg 7887
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-frec 6368  df-1o 6393  df-oadd 6397  df-er 6511  df-en 6717  df-dom 6718  df-fin 6719  df-sup 6959  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-n0 9129  df-z 9206  df-uz 9481  df-q 9572  df-rp 9604  df-ico 9844  df-fz 9959  df-fzo 10092  df-seqfrec 10395  df-exp 10469  df-ihash 10703  df-cj 10799  df-re 10800  df-im 10801  df-rsqrt 10955  df-abs 10956  df-clim 11235  df-sumdc 11310
This theorem is referenced by:  mertensabs  11493
  Copyright terms: Public domain W3C validator