Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > genpdflem | Unicode version |
Description: Simplification of upper or lower cut expression. Lemma for genpdf 7449. (Contributed by Jim Kingdon, 30-Sep-2019.) |
Ref | Expression |
---|---|
genpdflem.r | |
genpdflem.s |
Ref | Expression |
---|---|
genpdflem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 972 | . . . . . . . . . 10 | |
2 | 1 | rexbii 2473 | . . . . . . . . 9 |
3 | r19.42v 2623 | . . . . . . . . 9 | |
4 | 2, 3 | bitri 183 | . . . . . . . 8 |
5 | 4 | rexbii 2473 | . . . . . . 7 |
6 | df-rex 2450 | . . . . . . 7 | |
7 | 5, 6 | bitri 183 | . . . . . 6 |
8 | anass 399 | . . . . . . 7 | |
9 | 8 | exbii 1593 | . . . . . 6 |
10 | 7, 9 | bitr4i 186 | . . . . 5 |
11 | genpdflem.r | . . . . . . . . 9 | |
12 | 11 | ex 114 | . . . . . . . 8 |
13 | 12 | pm4.71rd 392 | . . . . . . 7 |
14 | 13 | anbi1d 461 | . . . . . 6 |
15 | 14 | exbidv 1813 | . . . . 5 |
16 | 10, 15 | bitr4id 198 | . . . 4 |
17 | df-rex 2450 | . . . 4 | |
18 | 16, 17 | bitr4di 197 | . . 3 |
19 | df-rex 2450 | . . . . . . 7 | |
20 | anass 399 | . . . . . . . 8 | |
21 | 20 | exbii 1593 | . . . . . . 7 |
22 | 19, 21 | bitr4i 186 | . . . . . 6 |
23 | genpdflem.s | . . . . . . . . . 10 | |
24 | 23 | ex 114 | . . . . . . . . 9 |
25 | 24 | pm4.71rd 392 | . . . . . . . 8 |
26 | 25 | anbi1d 461 | . . . . . . 7 |
27 | 26 | exbidv 1813 | . . . . . 6 |
28 | 22, 27 | bitr4id 198 | . . . . 5 |
29 | df-rex 2450 | . . . . 5 | |
30 | 28, 29 | bitr4di 197 | . . . 4 |
31 | 30 | rexbidv 2467 | . . 3 |
32 | 18, 31 | bitrd 187 | . 2 |
33 | 32 | rabbidv 2715 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wex 1480 wcel 2136 wrex 2445 crab 2448 (class class class)co 5842 cnq 7221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-ral 2449 df-rex 2450 df-rab 2453 |
This theorem is referenced by: genpdf 7449 |
Copyright terms: Public domain | W3C validator |