| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > genpdflem | Unicode version | ||
| Description: Simplification of upper or lower cut expression. Lemma for genpdf 7592. (Contributed by Jim Kingdon, 30-Sep-2019.) |
| Ref | Expression |
|---|---|
| genpdflem.r |
|
| genpdflem.s |
|
| Ref | Expression |
|---|---|
| genpdflem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 984 |
. . . . . . . . . 10
| |
| 2 | 1 | rexbii 2504 |
. . . . . . . . 9
|
| 3 | r19.42v 2654 |
. . . . . . . . 9
| |
| 4 | 2, 3 | bitri 184 |
. . . . . . . 8
|
| 5 | 4 | rexbii 2504 |
. . . . . . 7
|
| 6 | df-rex 2481 |
. . . . . . 7
| |
| 7 | 5, 6 | bitri 184 |
. . . . . 6
|
| 8 | anass 401 |
. . . . . . 7
| |
| 9 | 8 | exbii 1619 |
. . . . . 6
|
| 10 | 7, 9 | bitr4i 187 |
. . . . 5
|
| 11 | genpdflem.r |
. . . . . . . . 9
| |
| 12 | 11 | ex 115 |
. . . . . . . 8
|
| 13 | 12 | pm4.71rd 394 |
. . . . . . 7
|
| 14 | 13 | anbi1d 465 |
. . . . . 6
|
| 15 | 14 | exbidv 1839 |
. . . . 5
|
| 16 | 10, 15 | bitr4id 199 |
. . . 4
|
| 17 | df-rex 2481 |
. . . 4
| |
| 18 | 16, 17 | bitr4di 198 |
. . 3
|
| 19 | df-rex 2481 |
. . . . . . 7
| |
| 20 | anass 401 |
. . . . . . . 8
| |
| 21 | 20 | exbii 1619 |
. . . . . . 7
|
| 22 | 19, 21 | bitr4i 187 |
. . . . . 6
|
| 23 | genpdflem.s |
. . . . . . . . . 10
| |
| 24 | 23 | ex 115 |
. . . . . . . . 9
|
| 25 | 24 | pm4.71rd 394 |
. . . . . . . 8
|
| 26 | 25 | anbi1d 465 |
. . . . . . 7
|
| 27 | 26 | exbidv 1839 |
. . . . . 6
|
| 28 | 22, 27 | bitr4id 199 |
. . . . 5
|
| 29 | df-rex 2481 |
. . . . 5
| |
| 30 | 28, 29 | bitr4di 198 |
. . . 4
|
| 31 | 30 | rexbidv 2498 |
. . 3
|
| 32 | 18, 31 | bitrd 188 |
. 2
|
| 33 | 32 | rabbidv 2752 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-ral 2480 df-rex 2481 df-rab 2484 |
| This theorem is referenced by: genpdf 7592 |
| Copyright terms: Public domain | W3C validator |