Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > genpdflem | Unicode version |
Description: Simplification of upper or lower cut expression. Lemma for genpdf 7470. (Contributed by Jim Kingdon, 30-Sep-2019.) |
Ref | Expression |
---|---|
genpdflem.r | |
genpdflem.s |
Ref | Expression |
---|---|
genpdflem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 977 | . . . . . . . . . 10 | |
2 | 1 | rexbii 2477 | . . . . . . . . 9 |
3 | r19.42v 2627 | . . . . . . . . 9 | |
4 | 2, 3 | bitri 183 | . . . . . . . 8 |
5 | 4 | rexbii 2477 | . . . . . . 7 |
6 | df-rex 2454 | . . . . . . 7 | |
7 | 5, 6 | bitri 183 | . . . . . 6 |
8 | anass 399 | . . . . . . 7 | |
9 | 8 | exbii 1598 | . . . . . 6 |
10 | 7, 9 | bitr4i 186 | . . . . 5 |
11 | genpdflem.r | . . . . . . . . 9 | |
12 | 11 | ex 114 | . . . . . . . 8 |
13 | 12 | pm4.71rd 392 | . . . . . . 7 |
14 | 13 | anbi1d 462 | . . . . . 6 |
15 | 14 | exbidv 1818 | . . . . 5 |
16 | 10, 15 | bitr4id 198 | . . . 4 |
17 | df-rex 2454 | . . . 4 | |
18 | 16, 17 | bitr4di 197 | . . 3 |
19 | df-rex 2454 | . . . . . . 7 | |
20 | anass 399 | . . . . . . . 8 | |
21 | 20 | exbii 1598 | . . . . . . 7 |
22 | 19, 21 | bitr4i 186 | . . . . . 6 |
23 | genpdflem.s | . . . . . . . . . 10 | |
24 | 23 | ex 114 | . . . . . . . . 9 |
25 | 24 | pm4.71rd 392 | . . . . . . . 8 |
26 | 25 | anbi1d 462 | . . . . . . 7 |
27 | 26 | exbidv 1818 | . . . . . 6 |
28 | 22, 27 | bitr4id 198 | . . . . 5 |
29 | df-rex 2454 | . . . . 5 | |
30 | 28, 29 | bitr4di 197 | . . . 4 |
31 | 30 | rexbidv 2471 | . . 3 |
32 | 18, 31 | bitrd 187 | . 2 |
33 | 32 | rabbidv 2719 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wex 1485 wcel 2141 wrex 2449 crab 2452 (class class class)co 5853 cnq 7242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-ral 2453 df-rex 2454 df-rab 2457 |
This theorem is referenced by: genpdf 7470 |
Copyright terms: Public domain | W3C validator |