Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltdfpr | Unicode version |
Description: More convenient form of df-iltp 7411. (Contributed by Jim Kingdon, 15-Dec-2019.) |
Ref | Expression |
---|---|
ltdfpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3983 | . . 3 | |
2 | df-iltp 7411 | . . . 4 | |
3 | 2 | eleq2i 2233 | . . 3 |
4 | 1, 3 | bitri 183 | . 2 |
5 | simpl 108 | . . . . . . 7 | |
6 | 5 | fveq2d 5490 | . . . . . 6 |
7 | 6 | eleq2d 2236 | . . . . 5 |
8 | simpr 109 | . . . . . . 7 | |
9 | 8 | fveq2d 5490 | . . . . . 6 |
10 | 9 | eleq2d 2236 | . . . . 5 |
11 | 7, 10 | anbi12d 465 | . . . 4 |
12 | 11 | rexbidv 2467 | . . 3 |
13 | 12 | opelopab2a 4243 | . 2 |
14 | 4, 13 | syl5bb 191 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wrex 2445 cop 3579 class class class wbr 3982 copab 4042 cfv 5188 c1st 6106 c2nd 6107 cnq 7221 cnp 7232 cltp 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-iota 5153 df-fv 5196 df-iltp 7411 |
This theorem is referenced by: nqprl 7492 nqpru 7493 ltprordil 7530 ltnqpr 7534 ltnqpri 7535 ltpopr 7536 ltsopr 7537 ltaddpr 7538 ltexprlemm 7541 ltexprlemopu 7544 ltexprlemru 7553 aptiprleml 7580 aptiprlemu 7581 archpr 7584 cauappcvgprlem2 7601 caucvgprlem2 7621 caucvgprprlemopu 7640 caucvgprprlemexbt 7647 caucvgprprlem2 7651 suplocexprlemloc 7662 suplocexprlemub 7664 suplocexprlemlub 7665 |
Copyright terms: Public domain | W3C validator |