| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltdfpr | Unicode version | ||
| Description: More convenient form of df-iltp 7618. (Contributed by Jim Kingdon, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltdfpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4060 |
. . 3
| |
| 2 | df-iltp 7618 |
. . . 4
| |
| 3 | 2 | eleq2i 2274 |
. . 3
|
| 4 | 1, 3 | bitri 184 |
. 2
|
| 5 | simpl 109 |
. . . . . . 7
| |
| 6 | 5 | fveq2d 5603 |
. . . . . 6
|
| 7 | 6 | eleq2d 2277 |
. . . . 5
|
| 8 | simpr 110 |
. . . . . . 7
| |
| 9 | 8 | fveq2d 5603 |
. . . . . 6
|
| 10 | 9 | eleq2d 2277 |
. . . . 5
|
| 11 | 7, 10 | anbi12d 473 |
. . . 4
|
| 12 | 11 | rexbidv 2509 |
. . 3
|
| 13 | 12 | opelopab2a 4329 |
. 2
|
| 14 | 4, 13 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-iota 5251 df-fv 5298 df-iltp 7618 |
| This theorem is referenced by: nqprl 7699 nqpru 7700 ltprordil 7737 ltnqpr 7741 ltnqpri 7742 ltpopr 7743 ltsopr 7744 ltaddpr 7745 ltexprlemm 7748 ltexprlemopu 7751 ltexprlemru 7760 aptiprleml 7787 aptiprlemu 7788 archpr 7791 cauappcvgprlem2 7808 caucvgprlem2 7828 caucvgprprlemopu 7847 caucvgprprlemexbt 7854 caucvgprprlem2 7858 suplocexprlemloc 7869 suplocexprlemub 7871 suplocexprlemlub 7872 |
| Copyright terms: Public domain | W3C validator |