| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltdfpr | Unicode version | ||
| Description: More convenient form of df-iltp 7583. (Contributed by Jim Kingdon, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltdfpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4045 |
. . 3
| |
| 2 | df-iltp 7583 |
. . . 4
| |
| 3 | 2 | eleq2i 2272 |
. . 3
|
| 4 | 1, 3 | bitri 184 |
. 2
|
| 5 | simpl 109 |
. . . . . . 7
| |
| 6 | 5 | fveq2d 5580 |
. . . . . 6
|
| 7 | 6 | eleq2d 2275 |
. . . . 5
|
| 8 | simpr 110 |
. . . . . . 7
| |
| 9 | 8 | fveq2d 5580 |
. . . . . 6
|
| 10 | 9 | eleq2d 2275 |
. . . . 5
|
| 11 | 7, 10 | anbi12d 473 |
. . . 4
|
| 12 | 11 | rexbidv 2507 |
. . 3
|
| 13 | 12 | opelopab2a 4311 |
. 2
|
| 14 | 4, 13 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-iota 5232 df-fv 5279 df-iltp 7583 |
| This theorem is referenced by: nqprl 7664 nqpru 7665 ltprordil 7702 ltnqpr 7706 ltnqpri 7707 ltpopr 7708 ltsopr 7709 ltaddpr 7710 ltexprlemm 7713 ltexprlemopu 7716 ltexprlemru 7725 aptiprleml 7752 aptiprlemu 7753 archpr 7756 cauappcvgprlem2 7773 caucvgprlem2 7793 caucvgprprlemopu 7812 caucvgprprlemexbt 7819 caucvgprprlem2 7823 suplocexprlemloc 7834 suplocexprlemub 7836 suplocexprlemlub 7837 |
| Copyright terms: Public domain | W3C validator |