ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltdfpr Unicode version

Theorem ltdfpr 7338
Description: More convenient form of df-iltp 7302. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
ltdfpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  B ) ) ) )
Distinct variable groups:    A, q    B, q

Proof of Theorem ltdfpr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 3938 . . 3  |-  ( A 
<P  B  <->  <. A ,  B >.  e.  <P  )
2 df-iltp 7302 . . . 4  |-  <P  =  { <. x ,  y
>.  |  ( (
x  e.  P.  /\  y  e.  P. )  /\  E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) ) }
32eleq2i 2207 . . 3  |-  ( <. A ,  B >.  e. 
<P 
<-> 
<. A ,  B >.  e. 
{ <. x ,  y
>.  |  ( (
x  e.  P.  /\  y  e.  P. )  /\  E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) ) } )
41, 3bitri 183 . 2  |-  ( A 
<P  B  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  P.  /\  y  e.  P. )  /\  E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) ) } )
5 simpl 108 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  x  =  A )
65fveq2d 5433 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( 2nd `  x
)  =  ( 2nd `  A ) )
76eleq2d 2210 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( q  e.  ( 2nd `  x )  <-> 
q  e.  ( 2nd `  A ) ) )
8 simpr 109 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  y  =  B )
98fveq2d 5433 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( 1st `  y
)  =  ( 1st `  B ) )
109eleq2d 2210 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( q  e.  ( 1st `  y )  <-> 
q  e.  ( 1st `  B ) ) )
117, 10anbi12d 465 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( q  e.  ( 2nd `  x
)  /\  q  e.  ( 1st `  y ) )  <->  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  B ) ) ) )
1211rexbidv 2439 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( E. q  e. 
Q.  ( q  e.  ( 2nd `  x
)  /\  q  e.  ( 1st `  y ) )  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  B ) ) ) )
1312opelopab2a 4195 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  P.  /\  y  e.  P. )  /\  E. q  e.  Q.  ( q  e.  ( 2nd `  x )  /\  q  e.  ( 1st `  y ) ) ) }  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  B ) ) ) )
144, 13syl5bb 191 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  B  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   E.wrex 2418   <.cop 3535   class class class wbr 3937   {copab 3996   ` cfv 5131   1stc1st 6044   2ndc2nd 6045   Q.cnq 7112   P.cnp 7123    <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-iota 5096  df-fv 5139  df-iltp 7302
This theorem is referenced by:  nqprl  7383  nqpru  7384  ltprordil  7421  ltnqpr  7425  ltnqpri  7426  ltpopr  7427  ltsopr  7428  ltaddpr  7429  ltexprlemm  7432  ltexprlemopu  7435  ltexprlemru  7444  aptiprleml  7471  aptiprlemu  7472  archpr  7475  cauappcvgprlem2  7492  caucvgprlem2  7512  caucvgprprlemopu  7531  caucvgprprlemexbt  7538  caucvgprprlem2  7542  suplocexprlemloc  7553  suplocexprlemub  7555  suplocexprlemlub  7556
  Copyright terms: Public domain W3C validator