| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltdfpr | Unicode version | ||
| Description: More convenient form of df-iltp 7657. (Contributed by Jim Kingdon, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltdfpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4084 |
. . 3
| |
| 2 | df-iltp 7657 |
. . . 4
| |
| 3 | 2 | eleq2i 2296 |
. . 3
|
| 4 | 1, 3 | bitri 184 |
. 2
|
| 5 | simpl 109 |
. . . . . . 7
| |
| 6 | 5 | fveq2d 5631 |
. . . . . 6
|
| 7 | 6 | eleq2d 2299 |
. . . . 5
|
| 8 | simpr 110 |
. . . . . . 7
| |
| 9 | 8 | fveq2d 5631 |
. . . . . 6
|
| 10 | 9 | eleq2d 2299 |
. . . . 5
|
| 11 | 7, 10 | anbi12d 473 |
. . . 4
|
| 12 | 11 | rexbidv 2531 |
. . 3
|
| 13 | 12 | opelopab2a 4353 |
. 2
|
| 14 | 4, 13 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-iota 5278 df-fv 5326 df-iltp 7657 |
| This theorem is referenced by: nqprl 7738 nqpru 7739 ltprordil 7776 ltnqpr 7780 ltnqpri 7781 ltpopr 7782 ltsopr 7783 ltaddpr 7784 ltexprlemm 7787 ltexprlemopu 7790 ltexprlemru 7799 aptiprleml 7826 aptiprlemu 7827 archpr 7830 cauappcvgprlem2 7847 caucvgprlem2 7867 caucvgprprlemopu 7886 caucvgprprlemexbt 7893 caucvgprprlem2 7897 suplocexprlemloc 7908 suplocexprlemub 7910 suplocexprlemlub 7911 |
| Copyright terms: Public domain | W3C validator |