Proof of Theorem genpdflem
Step | Hyp | Ref
| Expression |
1 | | 3anass 972 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ (𝑟 ∈ 𝐴 ∧ (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)))) |
2 | 1 | rexbii 2473 |
. . . . . . . . 9
⊢
(∃𝑠 ∈
Q (𝑟 ∈
𝐴 ∧ 𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑠 ∈ Q (𝑟 ∈ 𝐴 ∧ (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)))) |
3 | | r19.42v 2623 |
. . . . . . . . 9
⊢
(∃𝑠 ∈
Q (𝑟 ∈
𝐴 ∧ (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))) ↔ (𝑟 ∈ 𝐴 ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)))) |
4 | 2, 3 | bitri 183 |
. . . . . . . 8
⊢
(∃𝑠 ∈
Q (𝑟 ∈
𝐴 ∧ 𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ (𝑟 ∈ 𝐴 ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)))) |
5 | 4 | rexbii 2473 |
. . . . . . 7
⊢
(∃𝑟 ∈
Q ∃𝑠
∈ Q (𝑟
∈ 𝐴 ∧ 𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑟 ∈ Q (𝑟 ∈ 𝐴 ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)))) |
6 | | df-rex 2450 |
. . . . . . 7
⊢
(∃𝑟 ∈
Q (𝑟 ∈
𝐴 ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))) ↔ ∃𝑟(𝑟 ∈ Q ∧ (𝑟 ∈ 𝐴 ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))))) |
7 | 5, 6 | bitri 183 |
. . . . . 6
⊢
(∃𝑟 ∈
Q ∃𝑠
∈ Q (𝑟
∈ 𝐴 ∧ 𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑟(𝑟 ∈ Q ∧ (𝑟 ∈ 𝐴 ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))))) |
8 | | anass 399 |
. . . . . . 7
⊢ (((𝑟 ∈ Q ∧
𝑟 ∈ 𝐴) ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))) ↔ (𝑟 ∈ Q ∧ (𝑟 ∈ 𝐴 ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))))) |
9 | 8 | exbii 1593 |
. . . . . 6
⊢
(∃𝑟((𝑟 ∈ Q ∧
𝑟 ∈ 𝐴) ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))) ↔ ∃𝑟(𝑟 ∈ Q ∧ (𝑟 ∈ 𝐴 ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))))) |
10 | 7, 9 | bitr4i 186 |
. . . . 5
⊢
(∃𝑟 ∈
Q ∃𝑠
∈ Q (𝑟
∈ 𝐴 ∧ 𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑟((𝑟 ∈ Q ∧ 𝑟 ∈ 𝐴) ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)))) |
11 | | genpdflem.r |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ Q) |
12 | 11 | ex 114 |
. . . . . . . 8
⊢ (𝜑 → (𝑟 ∈ 𝐴 → 𝑟 ∈ Q)) |
13 | 12 | pm4.71rd 392 |
. . . . . . 7
⊢ (𝜑 → (𝑟 ∈ 𝐴 ↔ (𝑟 ∈ Q ∧ 𝑟 ∈ 𝐴))) |
14 | 13 | anbi1d 461 |
. . . . . 6
⊢ (𝜑 → ((𝑟 ∈ 𝐴 ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))) ↔ ((𝑟 ∈ Q ∧ 𝑟 ∈ 𝐴) ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))))) |
15 | 14 | exbidv 1813 |
. . . . 5
⊢ (𝜑 → (∃𝑟(𝑟 ∈ 𝐴 ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))) ↔ ∃𝑟((𝑟 ∈ Q ∧ 𝑟 ∈ 𝐴) ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))))) |
16 | 10, 15 | bitr4id 198 |
. . . 4
⊢ (𝜑 → (∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑟(𝑟 ∈ 𝐴 ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))))) |
17 | | df-rex 2450 |
. . . 4
⊢
(∃𝑟 ∈
𝐴 ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑟(𝑟 ∈ 𝐴 ∧ ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)))) |
18 | 16, 17 | bitr4di 197 |
. . 3
⊢ (𝜑 → (∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)))) |
19 | | df-rex 2450 |
. . . . . . 7
⊢
(∃𝑠 ∈
Q (𝑠 ∈
𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑠(𝑠 ∈ Q ∧ (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)))) |
20 | | anass 399 |
. . . . . . . 8
⊢ (((𝑠 ∈ Q ∧
𝑠 ∈ 𝐵) ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ (𝑠 ∈ Q ∧ (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)))) |
21 | 20 | exbii 1593 |
. . . . . . 7
⊢
(∃𝑠((𝑠 ∈ Q ∧
𝑠 ∈ 𝐵) ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑠(𝑠 ∈ Q ∧ (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)))) |
22 | 19, 21 | bitr4i 186 |
. . . . . 6
⊢
(∃𝑠 ∈
Q (𝑠 ∈
𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑠((𝑠 ∈ Q ∧ 𝑠 ∈ 𝐵) ∧ 𝑞 = (𝑟𝐺𝑠))) |
23 | | genpdflem.s |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝑠 ∈ Q) |
24 | 23 | ex 114 |
. . . . . . . . 9
⊢ (𝜑 → (𝑠 ∈ 𝐵 → 𝑠 ∈ Q)) |
25 | 24 | pm4.71rd 392 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ 𝐵 ↔ (𝑠 ∈ Q ∧ 𝑠 ∈ 𝐵))) |
26 | 25 | anbi1d 461 |
. . . . . . 7
⊢ (𝜑 → ((𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ((𝑠 ∈ Q ∧ 𝑠 ∈ 𝐵) ∧ 𝑞 = (𝑟𝐺𝑠)))) |
27 | 26 | exbidv 1813 |
. . . . . 6
⊢ (𝜑 → (∃𝑠(𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑠((𝑠 ∈ Q ∧ 𝑠 ∈ 𝐵) ∧ 𝑞 = (𝑟𝐺𝑠)))) |
28 | 22, 27 | bitr4id 198 |
. . . . 5
⊢ (𝜑 → (∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)))) |
29 | | df-rex 2450 |
. . . . 5
⊢
(∃𝑠 ∈
𝐵 𝑞 = (𝑟𝐺𝑠) ↔ ∃𝑠(𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))) |
30 | 28, 29 | bitr4di 197 |
. . . 4
⊢ (𝜑 → (∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑠 ∈ 𝐵 𝑞 = (𝑟𝐺𝑠))) |
31 | 30 | rexbidv 2467 |
. . 3
⊢ (𝜑 → (∃𝑟 ∈ 𝐴 ∃𝑠 ∈ Q (𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐵 𝑞 = (𝑟𝐺𝑠))) |
32 | 18, 31 | bitrd 187 |
. 2
⊢ (𝜑 → (∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠)) ↔ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐵 𝑞 = (𝑟𝐺𝑠))) |
33 | 32 | rabbidv 2715 |
1
⊢ (𝜑 → {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q
∃𝑠 ∈
Q (𝑟 ∈
𝐴 ∧ 𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))} = {𝑞 ∈ Q ∣ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐵 𝑞 = (𝑟𝐺𝑠)}) |