| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grprida | Unicode version | ||
| Description: Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpinva.c |
|
| grpinva.o |
|
| grpinva.i |
|
| grpinva.a |
|
| grpinva.r |
|
| Ref | Expression |
|---|---|
| grprida |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinva.r |
. . . 4
| |
| 2 | oveq1 5974 |
. . . . . 6
| |
| 3 | 2 | eqeq1d 2216 |
. . . . 5
|
| 4 | 3 | cbvrexvw 2747 |
. . . 4
|
| 5 | 1, 4 | sylib 122 |
. . 3
|
| 6 | grpinva.a |
. . . . . . . 8
| |
| 7 | 6 | caovassg 6128 |
. . . . . . 7
|
| 8 | 7 | adantlr 477 |
. . . . . 6
|
| 9 | simprl 529 |
. . . . . 6
| |
| 10 | simprrl 539 |
. . . . . 6
| |
| 11 | 8, 9, 10, 9 | caovassd 6129 |
. . . . 5
|
| 12 | grpinva.c |
. . . . . . 7
| |
| 13 | grpinva.o |
. . . . . . 7
| |
| 14 | grpinva.i |
. . . . . . 7
| |
| 15 | simprrr 540 |
. . . . . . 7
| |
| 16 | 12, 13, 14, 6, 1, 9, 10, 15 | grpinva 13333 |
. . . . . 6
|
| 17 | 16 | oveq1d 5982 |
. . . . 5
|
| 18 | 15 | oveq2d 5983 |
. . . . 5
|
| 19 | 11, 17, 18 | 3eqtr3d 2248 |
. . . 4
|
| 20 | 19 | anassrs 400 |
. . 3
|
| 21 | 5, 20 | rexlimddv 2630 |
. 2
|
| 22 | 21, 14 | eqtr3d 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: isgrpde 13469 |
| Copyright terms: Public domain | W3C validator |