| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > grprida | Unicode version | ||
| Description: Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| grpinva.c | 
 | 
| grpinva.o | 
 | 
| grpinva.i | 
 | 
| grpinva.a | 
 | 
| grpinva.r | 
 | 
| Ref | Expression | 
|---|---|
| grprida | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpinva.r | 
. . . 4
 | |
| 2 | oveq1 5929 | 
. . . . . 6
 | |
| 3 | 2 | eqeq1d 2205 | 
. . . . 5
 | 
| 4 | 3 | cbvrexvw 2734 | 
. . . 4
 | 
| 5 | 1, 4 | sylib 122 | 
. . 3
 | 
| 6 | grpinva.a | 
. . . . . . . 8
 | |
| 7 | 6 | caovassg 6082 | 
. . . . . . 7
 | 
| 8 | 7 | adantlr 477 | 
. . . . . 6
 | 
| 9 | simprl 529 | 
. . . . . 6
 | |
| 10 | simprrl 539 | 
. . . . . 6
 | |
| 11 | 8, 9, 10, 9 | caovassd 6083 | 
. . . . 5
 | 
| 12 | grpinva.c | 
. . . . . . 7
 | |
| 13 | grpinva.o | 
. . . . . . 7
 | |
| 14 | grpinva.i | 
. . . . . . 7
 | |
| 15 | simprrr 540 | 
. . . . . . 7
 | |
| 16 | 12, 13, 14, 6, 1, 9, 10, 15 | grpinva 13029 | 
. . . . . 6
 | 
| 17 | 16 | oveq1d 5937 | 
. . . . 5
 | 
| 18 | 15 | oveq2d 5938 | 
. . . . 5
 | 
| 19 | 11, 17, 18 | 3eqtr3d 2237 | 
. . . 4
 | 
| 20 | 19 | anassrs 400 | 
. . 3
 | 
| 21 | 5, 20 | rexlimddv 2619 | 
. 2
 | 
| 22 | 21, 14 | eqtr3d 2231 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: isgrpde 13154 | 
| Copyright terms: Public domain | W3C validator |