| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grprida | Unicode version | ||
| Description: Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpinva.c |
|
| grpinva.o |
|
| grpinva.i |
|
| grpinva.a |
|
| grpinva.r |
|
| Ref | Expression |
|---|---|
| grprida |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinva.r |
. . . 4
| |
| 2 | oveq1 6007 |
. . . . . 6
| |
| 3 | 2 | eqeq1d 2238 |
. . . . 5
|
| 4 | 3 | cbvrexvw 2770 |
. . . 4
|
| 5 | 1, 4 | sylib 122 |
. . 3
|
| 6 | grpinva.a |
. . . . . . . 8
| |
| 7 | 6 | caovassg 6163 |
. . . . . . 7
|
| 8 | 7 | adantlr 477 |
. . . . . 6
|
| 9 | simprl 529 |
. . . . . 6
| |
| 10 | simprrl 539 |
. . . . . 6
| |
| 11 | 8, 9, 10, 9 | caovassd 6164 |
. . . . 5
|
| 12 | grpinva.c |
. . . . . . 7
| |
| 13 | grpinva.o |
. . . . . . 7
| |
| 14 | grpinva.i |
. . . . . . 7
| |
| 15 | simprrr 540 |
. . . . . . 7
| |
| 16 | 12, 13, 14, 6, 1, 9, 10, 15 | grpinva 13414 |
. . . . . 6
|
| 17 | 16 | oveq1d 6015 |
. . . . 5
|
| 18 | 15 | oveq2d 6016 |
. . . . 5
|
| 19 | 11, 17, 18 | 3eqtr3d 2270 |
. . . 4
|
| 20 | 19 | anassrs 400 |
. . 3
|
| 21 | 5, 20 | rexlimddv 2653 |
. 2
|
| 22 | 21, 14 | eqtr3d 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: isgrpde 13550 |
| Copyright terms: Public domain | W3C validator |