ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grprida GIF version

Theorem grprida 13030
Description: Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpinva.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
grpinva.o (𝜑𝑂𝐵)
grpinva.i ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
grpinva.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
grpinva.r ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
Assertion
Ref Expression
grprida ((𝜑𝑥𝐵) → (𝑥 + 𝑂) = 𝑥)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑂,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧

Proof of Theorem grprida
Dummy variables 𝑢 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinva.r . . . 4 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
2 oveq1 5929 . . . . . 6 (𝑦 = 𝑛 → (𝑦 + 𝑥) = (𝑛 + 𝑥))
32eqeq1d 2205 . . . . 5 (𝑦 = 𝑛 → ((𝑦 + 𝑥) = 𝑂 ↔ (𝑛 + 𝑥) = 𝑂))
43cbvrexvw 2734 . . . 4 (∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂 ↔ ∃𝑛𝐵 (𝑛 + 𝑥) = 𝑂)
51, 4sylib 122 . . 3 ((𝜑𝑥𝐵) → ∃𝑛𝐵 (𝑛 + 𝑥) = 𝑂)
6 grpinva.a . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
76caovassg 6082 . . . . . . 7 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
87adantlr 477 . . . . . 6 (((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
9 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → 𝑥𝐵)
10 simprrl 539 . . . . . 6 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → 𝑛𝐵)
118, 9, 10, 9caovassd 6083 . . . . 5 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → ((𝑥 + 𝑛) + 𝑥) = (𝑥 + (𝑛 + 𝑥)))
12 grpinva.c . . . . . . 7 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
13 grpinva.o . . . . . . 7 (𝜑𝑂𝐵)
14 grpinva.i . . . . . . 7 ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
15 simprrr 540 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → (𝑛 + 𝑥) = 𝑂)
1612, 13, 14, 6, 1, 9, 10, 15grpinva 13029 . . . . . 6 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → (𝑥 + 𝑛) = 𝑂)
1716oveq1d 5937 . . . . 5 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → ((𝑥 + 𝑛) + 𝑥) = (𝑂 + 𝑥))
1815oveq2d 5938 . . . . 5 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → (𝑥 + (𝑛 + 𝑥)) = (𝑥 + 𝑂))
1911, 17, 183eqtr3d 2237 . . . 4 ((𝜑 ∧ (𝑥𝐵 ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → (𝑂 + 𝑥) = (𝑥 + 𝑂))
2019anassrs 400 . . 3 (((𝜑𝑥𝐵) ∧ (𝑛𝐵 ∧ (𝑛 + 𝑥) = 𝑂)) → (𝑂 + 𝑥) = (𝑥 + 𝑂))
215, 20rexlimddv 2619 . 2 ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = (𝑥 + 𝑂))
2221, 14eqtr3d 2231 1 ((𝜑𝑥𝐵) → (𝑥 + 𝑂) = 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wrex 2476  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  isgrpde  13154
  Copyright terms: Public domain W3C validator