| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinva | Unicode version | ||
| Description: Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpinva.c |
|
| grpinva.o |
|
| grpinva.i |
|
| grpinva.a |
|
| grpinva.r |
|
| grpinva.x |
|
| grpinva.n |
|
| grpinva.e |
|
| Ref | Expression |
|---|---|
| grpinva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinva.c |
. 2
| |
| 2 | grpinva.o |
. 2
| |
| 3 | grpinva.i |
. 2
| |
| 4 | grpinva.a |
. 2
| |
| 5 | grpinva.r |
. 2
| |
| 6 | 1 | 3expb 1206 |
. . . . 5
|
| 7 | 6 | caovclg 6076 |
. . . 4
|
| 8 | 7 | adantlr 477 |
. . 3
|
| 9 | grpinva.x |
. . 3
| |
| 10 | grpinva.n |
. . 3
| |
| 11 | 8, 9, 10 | caovcld 6077 |
. 2
|
| 12 | 4 | caovassg 6082 |
. . . . 5
|
| 13 | 12 | adantlr 477 |
. . . 4
|
| 14 | 13, 9, 10, 11 | caovassd 6083 |
. . 3
|
| 15 | grpinva.e |
. . . . . 6
| |
| 16 | 15 | oveq1d 5937 |
. . . . 5
|
| 17 | 13, 10, 9, 10 | caovassd 6083 |
. . . . 5
|
| 18 | oveq2 5930 |
. . . . . . 7
| |
| 19 | id 19 |
. . . . . . 7
| |
| 20 | 18, 19 | eqeq12d 2211 |
. . . . . 6
|
| 21 | 3 | ralrimiva 2570 |
. . . . . . . 8
|
| 22 | oveq2 5930 |
. . . . . . . . . 10
| |
| 23 | id 19 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | eqeq12d 2211 |
. . . . . . . . 9
|
| 25 | 24 | cbvralvw 2733 |
. . . . . . . 8
|
| 26 | 21, 25 | sylib 122 |
. . . . . . 7
|
| 27 | 26 | adantr 276 |
. . . . . 6
|
| 28 | 20, 27, 10 | rspcdva 2873 |
. . . . 5
|
| 29 | 16, 17, 28 | 3eqtr3d 2237 |
. . . 4
|
| 30 | 29 | oveq2d 5938 |
. . 3
|
| 31 | 14, 30 | eqtrd 2229 |
. 2
|
| 32 | 1, 2, 3, 4, 5, 11, 31 | grpinvalem 13028 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: grprida 13030 grprcan 13169 grprinv 13183 |
| Copyright terms: Public domain | W3C validator |