ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reumodprminv Unicode version

Theorem reumodprminv 12207
Description: For any prime number and for any positive integer less than this prime number, there is a unique modular inverse of this positive integer. (Contributed by Alexander van der Vekens, 12-May-2018.)
Assertion
Ref Expression
reumodprminv  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E! i  e.  ( 1 ... ( P  -  1 ) ) ( ( N  x.  i )  mod 
P )  =  1 )
Distinct variable groups:    i, N    P, i

Proof of Theorem reumodprminv
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  P  e.  Prime )
2 elfzoelz 10103 . . . . 5  |-  ( N  e.  ( 1..^ P )  ->  N  e.  ZZ )
32adantl 275 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  N  e.  ZZ )
4 prmnn 12064 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
5 prmz 12065 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
6 fzoval 10104 . . . . . . . 8  |-  ( P  e.  ZZ  ->  (
1..^ P )  =  ( 1 ... ( P  -  1 ) ) )
75, 6syl 14 . . . . . . 7  |-  ( P  e.  Prime  ->  ( 1..^ P )  =  ( 1 ... ( P  -  1 ) ) )
87eleq2d 2240 . . . . . 6  |-  ( P  e.  Prime  ->  ( N  e.  ( 1..^ P )  <->  N  e.  (
1 ... ( P  - 
1 ) ) ) )
98biimpa 294 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  N  e.  ( 1 ... ( P  -  1 ) ) )
10 fzm1ndvds 11816 . . . . 5  |-  ( ( P  e.  NN  /\  N  e.  ( 1 ... ( P  - 
1 ) ) )  ->  -.  P  ||  N
)
114, 9, 10syl2an2r 590 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  -.  P  ||  N )
12 eqid 2170 . . . . . . 7  |-  ( ( N ^ ( P  -  2 ) )  mod  P )  =  ( ( N ^
( P  -  2 ) )  mod  P
)
1312modprminv 12203 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
( ( N ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  ( ( N ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 ) )
1413simpld 111 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
( N ^ ( P  -  2 ) )  mod  P )  e.  ( 1 ... ( P  -  1 ) ) )
1513simprd 113 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
( N  x.  (
( N ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  1 )
16 1eluzge0 9533 . . . . . . . . . . 11  |-  1  e.  ( ZZ>= `  0 )
17 fzss1 10019 . . . . . . . . . . 11  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) ) )
1816, 17mp1i 10 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( 1 ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) ) )
1918sseld 3146 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( s  e.  ( 1 ... ( P  -  1 ) )  ->  s  e.  ( 0 ... ( P  -  1 ) ) ) )
20193ad2ant1 1013 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
s  e.  ( 1 ... ( P  - 
1 ) )  -> 
s  e.  ( 0 ... ( P  - 
1 ) ) ) )
2120imdistani 443 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  /\  s  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  /\  s  e.  ( 0 ... ( P  -  1 ) ) ) )
2212modprminveq 12204 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
( s  e.  ( 0 ... ( P  -  1 ) )  /\  ( ( N  x.  s )  mod 
P )  =  1 )  <->  s  =  ( ( N ^ ( P  -  2 ) )  mod  P ) ) )
2322biimpa 294 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  /\  ( s  e.  ( 0 ... ( P  -  1 ) )  /\  ( ( N  x.  s )  mod  P )  =  1 ) )  -> 
s  =  ( ( N ^ ( P  -  2 ) )  mod  P ) )
2423eqcomd 2176 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  /\  ( s  e.  ( 0 ... ( P  -  1 ) )  /\  ( ( N  x.  s )  mod  P )  =  1 ) )  -> 
( ( N ^
( P  -  2 ) )  mod  P
)  =  s )
2524expr 373 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  /\  s  e.  ( 0 ... ( P  -  1 ) ) )  ->  ( (
( N  x.  s
)  mod  P )  =  1  ->  (
( N ^ ( P  -  2 ) )  mod  P )  =  s ) )
2621, 25syl 14 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  /\  s  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( (
( N  x.  s
)  mod  P )  =  1  ->  (
( N ^ ( P  -  2 ) )  mod  P )  =  s ) )
2726ralrimiva 2543 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod  P )  =  1  ->  ( ( N ^ ( P  - 
2 ) )  mod 
P )  =  s ) )
2814, 15, 27jca32 308 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
( ( N ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( ( N  x.  ( ( N ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P )  =  1  /\  A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod  P )  =  1  ->  ( ( N ^ ( P  - 
2 ) )  mod 
P )  =  s ) ) ) )
291, 3, 11, 28syl3anc 1233 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( (
( N ^ ( P  -  2 ) )  mod  P )  e.  ( 1 ... ( P  -  1 ) )  /\  (
( ( N  x.  ( ( N ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1  /\ 
A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod 
P )  =  1  ->  ( ( N ^ ( P  - 
2 ) )  mod 
P )  =  s ) ) ) )
30 oveq2 5861 . . . . . . 7  |-  ( i  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  ->  ( N  x.  i )  =  ( N  x.  ( ( N ^
( P  -  2 ) )  mod  P
) ) )
3130oveq1d 5868 . . . . . 6  |-  ( i  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  ->  (
( N  x.  i
)  mod  P )  =  ( ( N  x.  ( ( N ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P ) )
3231eqeq1d 2179 . . . . 5  |-  ( i  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  ->  (
( ( N  x.  i )  mod  P
)  =  1  <->  (
( N  x.  (
( N ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  1 ) )
33 eqeq1 2177 . . . . . . 7  |-  ( i  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  ->  (
i  =  s  <->  ( ( N ^ ( P  - 
2 ) )  mod 
P )  =  s ) )
3433imbi2d 229 . . . . . 6  |-  ( i  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  ->  (
( ( ( N  x.  s )  mod 
P )  =  1  ->  i  =  s )  <->  ( ( ( N  x.  s )  mod  P )  =  1  ->  ( ( N ^ ( P  - 
2 ) )  mod 
P )  =  s ) ) )
3534ralbidv 2470 . . . . 5  |-  ( i  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  ->  ( A. s  e.  (
1 ... ( P  - 
1 ) ) ( ( ( N  x.  s )  mod  P
)  =  1  -> 
i  =  s )  <->  A. s  e.  (
1 ... ( P  - 
1 ) ) ( ( ( N  x.  s )  mod  P
)  =  1  -> 
( ( N ^
( P  -  2 ) )  mod  P
)  =  s ) ) )
3632, 35anbi12d 470 . . . 4  |-  ( i  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  ->  (
( ( ( N  x.  i )  mod 
P )  =  1  /\  A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod  P )  =  1  ->  i  =  s ) )  <->  ( (
( N  x.  (
( N ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  1  /\  A. s  e.  ( 1 ... ( P  - 
1 ) ) ( ( ( N  x.  s )  mod  P
)  =  1  -> 
( ( N ^
( P  -  2 ) )  mod  P
)  =  s ) ) ) )
3736rspcev 2834 . . 3  |-  ( ( ( ( N ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( ( N  x.  ( ( N ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P )  =  1  /\  A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod  P )  =  1  ->  ( ( N ^ ( P  - 
2 ) )  mod 
P )  =  s ) ) )  ->  E. i  e.  (
1 ... ( P  - 
1 ) ) ( ( ( N  x.  i )  mod  P
)  =  1  /\ 
A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod 
P )  =  1  ->  i  =  s ) ) )
3829, 37syl 14 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. i  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  i )  mod  P )  =  1  /\  A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod  P )  =  1  ->  i  =  s ) ) )
39 oveq2 5861 . . . . 5  |-  ( i  =  s  ->  ( N  x.  i )  =  ( N  x.  s ) )
4039oveq1d 5868 . . . 4  |-  ( i  =  s  ->  (
( N  x.  i
)  mod  P )  =  ( ( N  x.  s )  mod 
P ) )
4140eqeq1d 2179 . . 3  |-  ( i  =  s  ->  (
( ( N  x.  i )  mod  P
)  =  1  <->  (
( N  x.  s
)  mod  P )  =  1 ) )
4241reu8 2926 . 2  |-  ( E! i  e.  ( 1 ... ( P  - 
1 ) ) ( ( N  x.  i
)  mod  P )  =  1  <->  E. i  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  i )  mod  P )  =  1  /\  A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod  P )  =  1  ->  i  =  s ) ) )
4338, 42sylibr 133 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E! i  e.  ( 1 ... ( P  -  1 ) ) ( ( N  x.  i )  mod 
P )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   E!wreu 2450    C_ wss 3121   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   0cc0 7774   1c1 7775    x. cmul 7779    - cmin 8090   NNcn 8878   2c2 8929   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965  ..^cfzo 10098    mod cmo 10278   ^cexp 10475    || cdvds 11749   Primecprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-2o 6396  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514  df-dvds 11750  df-gcd 11898  df-prm 12062  df-phi 12165
This theorem is referenced by:  modprm0  12208
  Copyright terms: Public domain W3C validator