ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reumodprminv Unicode version

Theorem reumodprminv 12181
Description: For any prime number and for any positive integer less than this prime number, there is a unique modular inverse of this positive integer. (Contributed by Alexander van der Vekens, 12-May-2018.)
Assertion
Ref Expression
reumodprminv  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E! i  e.  ( 1 ... ( P  -  1 ) ) ( ( N  x.  i )  mod 
P )  =  1 )
Distinct variable groups:    i, N    P, i

Proof of Theorem reumodprminv
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  P  e.  Prime )
2 elfzoelz 10078 . . . . 5  |-  ( N  e.  ( 1..^ P )  ->  N  e.  ZZ )
32adantl 275 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  N  e.  ZZ )
4 prmnn 12038 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
5 prmz 12039 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
6 fzoval 10079 . . . . . . . 8  |-  ( P  e.  ZZ  ->  (
1..^ P )  =  ( 1 ... ( P  -  1 ) ) )
75, 6syl 14 . . . . . . 7  |-  ( P  e.  Prime  ->  ( 1..^ P )  =  ( 1 ... ( P  -  1 ) ) )
87eleq2d 2235 . . . . . 6  |-  ( P  e.  Prime  ->  ( N  e.  ( 1..^ P )  <->  N  e.  (
1 ... ( P  - 
1 ) ) ) )
98biimpa 294 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  N  e.  ( 1 ... ( P  -  1 ) ) )
10 fzm1ndvds 11790 . . . . 5  |-  ( ( P  e.  NN  /\  N  e.  ( 1 ... ( P  - 
1 ) ) )  ->  -.  P  ||  N
)
114, 9, 10syl2an2r 585 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  -.  P  ||  N )
12 eqid 2165 . . . . . . 7  |-  ( ( N ^ ( P  -  2 ) )  mod  P )  =  ( ( N ^
( P  -  2 ) )  mod  P
)
1312modprminv 12177 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
( ( N ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( N  x.  ( ( N ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 ) )
1413simpld 111 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
( N ^ ( P  -  2 ) )  mod  P )  e.  ( 1 ... ( P  -  1 ) ) )
1513simprd 113 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
( N  x.  (
( N ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  1 )
16 1eluzge0 9508 . . . . . . . . . . 11  |-  1  e.  ( ZZ>= `  0 )
17 fzss1 9994 . . . . . . . . . . 11  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) ) )
1816, 17mp1i 10 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( 1 ... ( P  - 
1 ) )  C_  ( 0 ... ( P  -  1 ) ) )
1918sseld 3140 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( s  e.  ( 1 ... ( P  -  1 ) )  ->  s  e.  ( 0 ... ( P  -  1 ) ) ) )
20193ad2ant1 1008 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
s  e.  ( 1 ... ( P  - 
1 ) )  -> 
s  e.  ( 0 ... ( P  - 
1 ) ) ) )
2120imdistani 442 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  /\  s  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  /\  s  e.  ( 0 ... ( P  -  1 ) ) ) )
2212modprminveq 12178 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
( s  e.  ( 0 ... ( P  -  1 ) )  /\  ( ( N  x.  s )  mod 
P )  =  1 )  <->  s  =  ( ( N ^ ( P  -  2 ) )  mod  P ) ) )
2322biimpa 294 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  /\  ( s  e.  ( 0 ... ( P  -  1 ) )  /\  ( ( N  x.  s )  mod  P )  =  1 ) )  -> 
s  =  ( ( N ^ ( P  -  2 ) )  mod  P ) )
2423eqcomd 2171 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  /\  ( s  e.  ( 0 ... ( P  -  1 ) )  /\  ( ( N  x.  s )  mod  P )  =  1 ) )  -> 
( ( N ^
( P  -  2 ) )  mod  P
)  =  s )
2524expr 373 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  /\  s  e.  ( 0 ... ( P  -  1 ) ) )  ->  ( (
( N  x.  s
)  mod  P )  =  1  ->  (
( N ^ ( P  -  2 ) )  mod  P )  =  s ) )
2621, 25syl 14 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  /\  s  e.  ( 1 ... ( P  -  1 ) ) )  ->  ( (
( N  x.  s
)  mod  P )  =  1  ->  (
( N ^ ( P  -  2 ) )  mod  P )  =  s ) )
2726ralrimiva 2538 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod  P )  =  1  ->  ( ( N ^ ( P  - 
2 ) )  mod 
P )  =  s ) )
2814, 15, 27jca32 308 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  -.  P  ||  N )  ->  (
( ( N ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( ( N  x.  ( ( N ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P )  =  1  /\  A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod  P )  =  1  ->  ( ( N ^ ( P  - 
2 ) )  mod 
P )  =  s ) ) ) )
291, 3, 11, 28syl3anc 1228 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  ( (
( N ^ ( P  -  2 ) )  mod  P )  e.  ( 1 ... ( P  -  1 ) )  /\  (
( ( N  x.  ( ( N ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1  /\ 
A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod 
P )  =  1  ->  ( ( N ^ ( P  - 
2 ) )  mod 
P )  =  s ) ) ) )
30 oveq2 5849 . . . . . . 7  |-  ( i  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  ->  ( N  x.  i )  =  ( N  x.  ( ( N ^
( P  -  2 ) )  mod  P
) ) )
3130oveq1d 5856 . . . . . 6  |-  ( i  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  ->  (
( N  x.  i
)  mod  P )  =  ( ( N  x.  ( ( N ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P ) )
3231eqeq1d 2174 . . . . 5  |-  ( i  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  ->  (
( ( N  x.  i )  mod  P
)  =  1  <->  (
( N  x.  (
( N ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  1 ) )
33 eqeq1 2172 . . . . . . 7  |-  ( i  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  ->  (
i  =  s  <->  ( ( N ^ ( P  - 
2 ) )  mod 
P )  =  s ) )
3433imbi2d 229 . . . . . 6  |-  ( i  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  ->  (
( ( ( N  x.  s )  mod 
P )  =  1  ->  i  =  s )  <->  ( ( ( N  x.  s )  mod  P )  =  1  ->  ( ( N ^ ( P  - 
2 ) )  mod 
P )  =  s ) ) )
3534ralbidv 2465 . . . . 5  |-  ( i  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  ->  ( A. s  e.  (
1 ... ( P  - 
1 ) ) ( ( ( N  x.  s )  mod  P
)  =  1  -> 
i  =  s )  <->  A. s  e.  (
1 ... ( P  - 
1 ) ) ( ( ( N  x.  s )  mod  P
)  =  1  -> 
( ( N ^
( P  -  2 ) )  mod  P
)  =  s ) ) )
3632, 35anbi12d 465 . . . 4  |-  ( i  =  ( ( N ^ ( P  - 
2 ) )  mod 
P )  ->  (
( ( ( N  x.  i )  mod 
P )  =  1  /\  A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod  P )  =  1  ->  i  =  s ) )  <->  ( (
( N  x.  (
( N ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  1  /\  A. s  e.  ( 1 ... ( P  - 
1 ) ) ( ( ( N  x.  s )  mod  P
)  =  1  -> 
( ( N ^
( P  -  2 ) )  mod  P
)  =  s ) ) ) )
3736rspcev 2829 . . 3  |-  ( ( ( ( N ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( ( N  x.  ( ( N ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P )  =  1  /\  A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod  P )  =  1  ->  ( ( N ^ ( P  - 
2 ) )  mod 
P )  =  s ) ) )  ->  E. i  e.  (
1 ... ( P  - 
1 ) ) ( ( ( N  x.  i )  mod  P
)  =  1  /\ 
A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod 
P )  =  1  ->  i  =  s ) ) )
3829, 37syl 14 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E. i  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  i )  mod  P )  =  1  /\  A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod  P )  =  1  ->  i  =  s ) ) )
39 oveq2 5849 . . . . 5  |-  ( i  =  s  ->  ( N  x.  i )  =  ( N  x.  s ) )
4039oveq1d 5856 . . . 4  |-  ( i  =  s  ->  (
( N  x.  i
)  mod  P )  =  ( ( N  x.  s )  mod 
P ) )
4140eqeq1d 2174 . . 3  |-  ( i  =  s  ->  (
( ( N  x.  i )  mod  P
)  =  1  <->  (
( N  x.  s
)  mod  P )  =  1 ) )
4241reu8 2921 . 2  |-  ( E! i  e.  ( 1 ... ( P  - 
1 ) ) ( ( N  x.  i
)  mod  P )  =  1  <->  E. i  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  i )  mod  P )  =  1  /\  A. s  e.  ( 1 ... ( P  -  1 ) ) ( ( ( N  x.  s )  mod  P )  =  1  ->  i  =  s ) ) )
4338, 42sylibr 133 1  |-  ( ( P  e.  Prime  /\  N  e.  ( 1..^ P ) )  ->  E! i  e.  ( 1 ... ( P  -  1 ) ) ( ( N  x.  i )  mod 
P )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2443   E.wrex 2444   E!wreu 2445    C_ wss 3115   class class class wbr 3981   ` cfv 5187  (class class class)co 5841   0cc0 7749   1c1 7750    x. cmul 7754    - cmin 8065   NNcn 8853   2c2 8904   ZZcz 9187   ZZ>=cuz 9462   ...cfz 9940  ..^cfzo 10073    mod cmo 10253   ^cexp 10450    || cdvds 11723   Primecprime 12035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-irdg 6334  df-frec 6355  df-1o 6380  df-2o 6381  df-oadd 6384  df-er 6497  df-en 6703  df-dom 6704  df-fin 6705  df-sup 6945  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-ihash 10685  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-clim 11216  df-proddc 11488  df-dvds 11724  df-gcd 11872  df-prm 12036  df-phi 12139
This theorem is referenced by:  modprm0  12182
  Copyright terms: Public domain W3C validator