ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvmptrab Unicode version

Theorem elfvmptrab 5448
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab.f  |-  F  =  ( x  e.  V  |->  { y  e.  M  |  ph } )
elfvmptrab.v  |-  ( X  e.  V  ->  M  e.  _V )
Assertion
Ref Expression
elfvmptrab  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  M )
)
Distinct variable groups:    x, M, y   
x, V    x, X, y    y, Y
Allowed substitution hints:    ph( x, y)    F( x, y)    V( y)    Y( x)

Proof of Theorem elfvmptrab
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 elfvmptrab.f . . . 4  |-  F  =  ( x  e.  V  |->  { y  e.  M  |  ph } )
2 csbconstg 2967 . . . . . . 7  |-  ( x  e.  V  ->  [_ x  /  m ]_ M  =  M )
32eqcomd 2105 . . . . . 6  |-  ( x  e.  V  ->  M  =  [_ x  /  m ]_ M )
4 rabeq 2633 . . . . . 6  |-  ( M  =  [_ x  /  m ]_ M  ->  { y  e.  M  |  ph }  =  { y  e.  [_ x  /  m ]_ M  |  ph }
)
53, 4syl 14 . . . . 5  |-  ( x  e.  V  ->  { y  e.  M  |  ph }  =  { y  e.  [_ x  /  m ]_ M  |  ph }
)
65mpteq2ia 3954 . . . 4  |-  ( x  e.  V  |->  { y  e.  M  |  ph } )  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
71, 6eqtri 2120 . . 3  |-  F  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
8 csbconstg 2967 . . . 4  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  =  M )
9 elfvmptrab.v . . . 4  |-  ( X  e.  V  ->  M  e.  _V )
108, 9eqeltrd 2176 . . 3  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  e. 
_V )
117, 10elfvmptrab1 5447 . 2  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) )
128eleq2d 2169 . . . 4  |-  ( X  e.  V  ->  ( Y  e.  [_ X  /  m ]_ M  <->  Y  e.  M ) )
1312biimpd 143 . . 3  |-  ( X  e.  V  ->  ( Y  e.  [_ X  /  m ]_ M  ->  Y  e.  M ) )
1413imdistani 437 . 2  |-  ( ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M )  -> 
( X  e.  V  /\  Y  e.  M
) )
1511, 14syl 14 1  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  M )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1299    e. wcel 1448   {crab 2379   _Vcvv 2641   [_csb 2955    |-> cmpt 3929   ` cfv 5059
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fv 5067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator