ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvmptrab Unicode version

Theorem elfvmptrab 5723
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab.f  |-  F  =  ( x  e.  V  |->  { y  e.  M  |  ph } )
elfvmptrab.v  |-  ( X  e.  V  ->  M  e.  _V )
Assertion
Ref Expression
elfvmptrab  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  M )
)
Distinct variable groups:    x, M, y   
x, V    x, X, y    y, Y
Allowed substitution hints:    ph( x, y)    F( x, y)    V( y)    Y( x)

Proof of Theorem elfvmptrab
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 elfvmptrab.f . . . 4  |-  F  =  ( x  e.  V  |->  { y  e.  M  |  ph } )
2 csbconstg 3138 . . . . . . 7  |-  ( x  e.  V  ->  [_ x  /  m ]_ M  =  M )
32eqcomd 2235 . . . . . 6  |-  ( x  e.  V  ->  M  =  [_ x  /  m ]_ M )
4 rabeq 2791 . . . . . 6  |-  ( M  =  [_ x  /  m ]_ M  ->  { y  e.  M  |  ph }  =  { y  e.  [_ x  /  m ]_ M  |  ph }
)
53, 4syl 14 . . . . 5  |-  ( x  e.  V  ->  { y  e.  M  |  ph }  =  { y  e.  [_ x  /  m ]_ M  |  ph }
)
65mpteq2ia 4169 . . . 4  |-  ( x  e.  V  |->  { y  e.  M  |  ph } )  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
71, 6eqtri 2250 . . 3  |-  F  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
8 csbconstg 3138 . . . 4  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  =  M )
9 elfvmptrab.v . . . 4  |-  ( X  e.  V  ->  M  e.  _V )
108, 9eqeltrd 2306 . . 3  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  e. 
_V )
117, 10elfvmptrab1 5722 . 2  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) )
128eleq2d 2299 . . . 4  |-  ( X  e.  V  ->  ( Y  e.  [_ X  /  m ]_ M  <->  Y  e.  M ) )
1312biimpd 144 . . 3  |-  ( X  e.  V  ->  ( Y  e.  [_ X  /  m ]_ M  ->  Y  e.  M ) )
1413imdistani 445 . 2  |-  ( ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M )  -> 
( X  e.  V  /\  Y  e.  M
) )
1511, 14syl 14 1  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  M )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799   [_csb 3124    |-> cmpt 4144   ` cfv 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fv 5322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator