ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvmptrab Unicode version

Theorem elfvmptrab 5591
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab.f  |-  F  =  ( x  e.  V  |->  { y  e.  M  |  ph } )
elfvmptrab.v  |-  ( X  e.  V  ->  M  e.  _V )
Assertion
Ref Expression
elfvmptrab  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  M )
)
Distinct variable groups:    x, M, y   
x, V    x, X, y    y, Y
Allowed substitution hints:    ph( x, y)    F( x, y)    V( y)    Y( x)

Proof of Theorem elfvmptrab
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 elfvmptrab.f . . . 4  |-  F  =  ( x  e.  V  |->  { y  e.  M  |  ph } )
2 csbconstg 3063 . . . . . . 7  |-  ( x  e.  V  ->  [_ x  /  m ]_ M  =  M )
32eqcomd 2176 . . . . . 6  |-  ( x  e.  V  ->  M  =  [_ x  /  m ]_ M )
4 rabeq 2722 . . . . . 6  |-  ( M  =  [_ x  /  m ]_ M  ->  { y  e.  M  |  ph }  =  { y  e.  [_ x  /  m ]_ M  |  ph }
)
53, 4syl 14 . . . . 5  |-  ( x  e.  V  ->  { y  e.  M  |  ph }  =  { y  e.  [_ x  /  m ]_ M  |  ph }
)
65mpteq2ia 4075 . . . 4  |-  ( x  e.  V  |->  { y  e.  M  |  ph } )  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
71, 6eqtri 2191 . . 3  |-  F  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
8 csbconstg 3063 . . . 4  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  =  M )
9 elfvmptrab.v . . . 4  |-  ( X  e.  V  ->  M  e.  _V )
108, 9eqeltrd 2247 . . 3  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  e. 
_V )
117, 10elfvmptrab1 5590 . 2  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) )
128eleq2d 2240 . . . 4  |-  ( X  e.  V  ->  ( Y  e.  [_ X  /  m ]_ M  <->  Y  e.  M ) )
1312biimpd 143 . . 3  |-  ( X  e.  V  ->  ( Y  e.  [_ X  /  m ]_ M  ->  Y  e.  M ) )
1413imdistani 443 . 2  |-  ( ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M )  -> 
( X  e.  V  /\  Y  e.  M
) )
1511, 14syl 14 1  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  M )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {crab 2452   _Vcvv 2730   [_csb 3049    |-> cmpt 4050   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator