ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvmptrab Unicode version

Theorem elfvmptrab 5603
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab.f  |-  F  =  ( x  e.  V  |->  { y  e.  M  |  ph } )
elfvmptrab.v  |-  ( X  e.  V  ->  M  e.  _V )
Assertion
Ref Expression
elfvmptrab  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  M )
)
Distinct variable groups:    x, M, y   
x, V    x, X, y    y, Y
Allowed substitution hints:    ph( x, y)    F( x, y)    V( y)    Y( x)

Proof of Theorem elfvmptrab
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 elfvmptrab.f . . . 4  |-  F  =  ( x  e.  V  |->  { y  e.  M  |  ph } )
2 csbconstg 3069 . . . . . . 7  |-  ( x  e.  V  ->  [_ x  /  m ]_ M  =  M )
32eqcomd 2181 . . . . . 6  |-  ( x  e.  V  ->  M  =  [_ x  /  m ]_ M )
4 rabeq 2727 . . . . . 6  |-  ( M  =  [_ x  /  m ]_ M  ->  { y  e.  M  |  ph }  =  { y  e.  [_ x  /  m ]_ M  |  ph }
)
53, 4syl 14 . . . . 5  |-  ( x  e.  V  ->  { y  e.  M  |  ph }  =  { y  e.  [_ x  /  m ]_ M  |  ph }
)
65mpteq2ia 4084 . . . 4  |-  ( x  e.  V  |->  { y  e.  M  |  ph } )  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
71, 6eqtri 2196 . . 3  |-  F  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
8 csbconstg 3069 . . . 4  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  =  M )
9 elfvmptrab.v . . . 4  |-  ( X  e.  V  ->  M  e.  _V )
108, 9eqeltrd 2252 . . 3  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  e. 
_V )
117, 10elfvmptrab1 5602 . 2  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) )
128eleq2d 2245 . . . 4  |-  ( X  e.  V  ->  ( Y  e.  [_ X  /  m ]_ M  <->  Y  e.  M ) )
1312biimpd 144 . . 3  |-  ( X  e.  V  ->  ( Y  e.  [_ X  /  m ]_ M  ->  Y  e.  M ) )
1413imdistani 445 . 2  |-  ( ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M )  -> 
( X  e.  V  /\  Y  e.  M
) )
1511, 14syl 14 1  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  M )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   {crab 2457   _Vcvv 2735   [_csb 3055    |-> cmpt 4059   ` cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fv 5216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator