ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvmptrab Unicode version

Theorem elfvmptrab 5581
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab.f  |-  F  =  ( x  e.  V  |->  { y  e.  M  |  ph } )
elfvmptrab.v  |-  ( X  e.  V  ->  M  e.  _V )
Assertion
Ref Expression
elfvmptrab  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  M )
)
Distinct variable groups:    x, M, y   
x, V    x, X, y    y, Y
Allowed substitution hints:    ph( x, y)    F( x, y)    V( y)    Y( x)

Proof of Theorem elfvmptrab
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 elfvmptrab.f . . . 4  |-  F  =  ( x  e.  V  |->  { y  e.  M  |  ph } )
2 csbconstg 3059 . . . . . . 7  |-  ( x  e.  V  ->  [_ x  /  m ]_ M  =  M )
32eqcomd 2171 . . . . . 6  |-  ( x  e.  V  ->  M  =  [_ x  /  m ]_ M )
4 rabeq 2718 . . . . . 6  |-  ( M  =  [_ x  /  m ]_ M  ->  { y  e.  M  |  ph }  =  { y  e.  [_ x  /  m ]_ M  |  ph }
)
53, 4syl 14 . . . . 5  |-  ( x  e.  V  ->  { y  e.  M  |  ph }  =  { y  e.  [_ x  /  m ]_ M  |  ph }
)
65mpteq2ia 4068 . . . 4  |-  ( x  e.  V  |->  { y  e.  M  |  ph } )  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
71, 6eqtri 2186 . . 3  |-  F  =  ( x  e.  V  |->  { y  e.  [_ x  /  m ]_ M  |  ph } )
8 csbconstg 3059 . . . 4  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  =  M )
9 elfvmptrab.v . . . 4  |-  ( X  e.  V  ->  M  e.  _V )
108, 9eqeltrd 2243 . . 3  |-  ( X  e.  V  ->  [_ X  /  m ]_ M  e. 
_V )
117, 10elfvmptrab1 5580 . 2  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M ) )
128eleq2d 2236 . . . 4  |-  ( X  e.  V  ->  ( Y  e.  [_ X  /  m ]_ M  <->  Y  e.  M ) )
1312biimpd 143 . . 3  |-  ( X  e.  V  ->  ( Y  e.  [_ X  /  m ]_ M  ->  Y  e.  M ) )
1413imdistani 442 . 2  |-  ( ( X  e.  V  /\  Y  e.  [_ X  /  m ]_ M )  -> 
( X  e.  V  /\  Y  e.  M
) )
1511, 14syl 14 1  |-  ( Y  e.  ( F `  X )  ->  ( X  e.  V  /\  Y  e.  M )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {crab 2448   _Vcvv 2726   [_csb 3045    |-> cmpt 4043   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator