ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddpr Unicode version

Theorem ltaddpr 7429
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
ltaddpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  <P  ( A  +P.  B ) )

Proof of Theorem ltaddpr
Dummy variables  f  g  h  x  y  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7307 . . . 4  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 prml 7309 . . . 4  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  ->  E. p  e.  Q.  p  e.  ( 1st `  B ) )
31, 2syl 14 . . 3  |-  ( B  e.  P.  ->  E. p  e.  Q.  p  e.  ( 1st `  B ) )
43adantl 275 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. p  e.  Q.  p  e.  ( 1st `  B ) )
5 prop 7307 . . . . 5  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
6 prarloc 7335 . . . . 5  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  p  e.  Q. )  ->  E. r  e.  ( 1st `  A ) E. q  e.  ( 2nd `  A ) q  <Q  ( r  +Q  p ) )
75, 6sylan 281 . . . 4  |-  ( ( A  e.  P.  /\  p  e.  Q. )  ->  E. r  e.  ( 1st `  A ) E. q  e.  ( 2nd `  A ) q  <Q  ( r  +Q  p ) )
87ad2ant2r 501 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  ->  E. r  e.  ( 1st `  A ) E. q  e.  ( 2nd `  A ) q  <Q  ( r  +Q  p ) )
9 elprnqu 7314 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  q  e.  ( 2nd `  A ) )  -> 
q  e.  Q. )
105, 9sylan 281 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  q  e.  ( 2nd `  A ) )  -> 
q  e.  Q. )
1110adantlr 469 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  q  e.  ( 2nd `  A ) )  ->  q  e.  Q. )
1211ad2ant2rl 503 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  ->  q  e.  Q. )
1312adantr 274 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  /\  q  <Q  ( r  +Q  p
) )  ->  q  e.  Q. )
14 simplrr 526 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  /\  q  <Q  ( r  +Q  p
) )  ->  q  e.  ( 2nd `  A
) )
15 simprl 521 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  Q.  /\  p  e.  ( 1st `  B ) )  /\  ( r  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A ) ) )  ->  r  e.  ( 1st `  A
) )
16 simplr 520 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  Q.  /\  p  e.  ( 1st `  B ) )  /\  ( r  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A ) ) )  ->  p  e.  ( 1st `  B
) )
1715, 16jca 304 . . . . . . . . . . . 12  |-  ( ( ( p  e.  Q.  /\  p  e.  ( 1st `  B ) )  /\  ( r  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A ) ) )  ->  (
r  e.  ( 1st `  A )  /\  p  e.  ( 1st `  B
) ) )
18 df-iplp 7300 . . . . . . . . . . . . 13  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
19 addclnq 7207 . . . . . . . . . . . . 13  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
2018, 19genpprecll 7346 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( r  e.  ( 1st `  A
)  /\  p  e.  ( 1st `  B ) )  ->  ( r  +Q  p )  e.  ( 1st `  ( A  +P.  B ) ) ) )
2117, 20syl5 32 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( p  e.  Q.  /\  p  e.  ( 1st `  B
) )  /\  (
r  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) ) )  -> 
( r  +Q  p
)  e.  ( 1st `  ( A  +P.  B
) ) ) )
2221imdistani 442 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( p  e. 
Q.  /\  p  e.  ( 1st `  B ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) ) )  -> 
( ( A  e. 
P.  /\  B  e.  P. )  /\  (
r  +Q  p )  e.  ( 1st `  ( A  +P.  B ) ) ) )
23 addclpr 7369 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
24 prop 7307 . . . . . . . . . . . 12  |-  ( ( A  +P.  B )  e.  P.  ->  <. ( 1st `  ( A  +P.  B ) ) ,  ( 2nd `  ( A  +P.  B ) )
>.  e.  P. )
25 prcdnql 7316 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  ( A  +P.  B ) ) ,  ( 2nd `  ( A  +P.  B ) )
>.  e.  P.  /\  (
r  +Q  p )  e.  ( 1st `  ( A  +P.  B ) ) )  ->  ( q  <Q  ( r  +Q  p
)  ->  q  e.  ( 1st `  ( A  +P.  B ) ) ) )
2624, 25sylan 281 . . . . . . . . . . 11  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( r  +Q  p
)  e.  ( 1st `  ( A  +P.  B
) ) )  -> 
( q  <Q  (
r  +Q  p )  ->  q  e.  ( 1st `  ( A  +P.  B ) ) ) )
2723, 26sylan 281 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( r  +Q  p
)  e.  ( 1st `  ( A  +P.  B
) ) )  -> 
( q  <Q  (
r  +Q  p )  ->  q  e.  ( 1st `  ( A  +P.  B ) ) ) )
2822, 27syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( p  e. 
Q.  /\  p  e.  ( 1st `  B ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) ) )  -> 
( q  <Q  (
r  +Q  p )  ->  q  e.  ( 1st `  ( A  +P.  B ) ) ) )
2928anassrs 398 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  ->  (
q  <Q  ( r  +Q  p )  ->  q  e.  ( 1st `  ( A  +P.  B ) ) ) )
3029imp 123 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  /\  q  <Q  ( r  +Q  p
) )  ->  q  e.  ( 1st `  ( A  +P.  B ) ) )
31 rspe 2484 . . . . . . 7  |-  ( ( q  e.  Q.  /\  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  ( A  +P.  B ) ) ) )  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  ( A  +P.  B ) ) ) )
3213, 14, 30, 31syl12anc 1215 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  /\  q  <Q  ( r  +Q  p
) )  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  ( A  +P.  B ) ) ) )
33 ltdfpr 7338 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( A  +P.  B )  e.  P. )  -> 
( A  <P  ( A  +P.  B )  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  ( A  +P.  B ) ) ) ) )
3423, 33syldan 280 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  ( A  +P.  B )  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  ( A  +P.  B ) ) ) ) )
3534ad3antrrr 484 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  /\  q  <Q  ( r  +Q  p
) )  ->  ( A  <P  ( A  +P.  B )  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  ( A  +P.  B ) ) ) ) )
3632, 35mpbird 166 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  /\  q  <Q  ( r  +Q  p
) )  ->  A  <P  ( A  +P.  B
) )
3736ex 114 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  ->  (
q  <Q  ( r  +Q  p )  ->  A  <P  ( A  +P.  B
) ) )
3837rexlimdvva 2560 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  ->  ( E. r  e.  ( 1st `  A
) E. q  e.  ( 2nd `  A
) q  <Q  (
r  +Q  p )  ->  A  <P  ( A  +P.  B ) ) )
398, 38mpd 13 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  ->  A  <P  ( A  +P.  B ) )
404, 39rexlimddv 2557 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  <P  ( A  +P.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1481   E.wrex 2418   <.cop 3535   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   1stc1st 6044   2ndc2nd 6045   Q.cnq 7112    +Q cplq 7114    <Q cltq 7117   P.cnp 7123    +P. cpp 7125    <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302
This theorem is referenced by:  ltexprlemrl  7442  ltaprlem  7450  ltaprg  7451  prplnqu  7452  ltmprr  7474  caucvgprprlemnkltj  7521  caucvgprprlemnkeqj  7522  caucvgprprlemnbj  7525  0lt1sr  7597  recexgt0sr  7605  mulgt0sr  7610  archsr  7614  prsrpos  7617  mappsrprg  7636  pitoregt0  7681
  Copyright terms: Public domain W3C validator