ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddpr Unicode version

Theorem ltaddpr 7784
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
ltaddpr  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  <P  ( A  +P.  B ) )

Proof of Theorem ltaddpr
Dummy variables  f  g  h  x  y  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7662 . . . 4  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
2 prml 7664 . . . 4  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  ->  E. p  e.  Q.  p  e.  ( 1st `  B ) )
31, 2syl 14 . . 3  |-  ( B  e.  P.  ->  E. p  e.  Q.  p  e.  ( 1st `  B ) )
43adantl 277 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. p  e.  Q.  p  e.  ( 1st `  B ) )
5 prop 7662 . . . . 5  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
6 prarloc 7690 . . . . 5  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  p  e.  Q. )  ->  E. r  e.  ( 1st `  A ) E. q  e.  ( 2nd `  A ) q  <Q  ( r  +Q  p ) )
75, 6sylan 283 . . . 4  |-  ( ( A  e.  P.  /\  p  e.  Q. )  ->  E. r  e.  ( 1st `  A ) E. q  e.  ( 2nd `  A ) q  <Q  ( r  +Q  p ) )
87ad2ant2r 509 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  ->  E. r  e.  ( 1st `  A ) E. q  e.  ( 2nd `  A ) q  <Q  ( r  +Q  p ) )
9 elprnqu 7669 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  q  e.  ( 2nd `  A ) )  -> 
q  e.  Q. )
105, 9sylan 283 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  q  e.  ( 2nd `  A ) )  -> 
q  e.  Q. )
1110adantlr 477 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  q  e.  ( 2nd `  A ) )  ->  q  e.  Q. )
1211ad2ant2rl 511 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  ->  q  e.  Q. )
1312adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  /\  q  <Q  ( r  +Q  p
) )  ->  q  e.  Q. )
14 simplrr 536 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  /\  q  <Q  ( r  +Q  p
) )  ->  q  e.  ( 2nd `  A
) )
15 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  Q.  /\  p  e.  ( 1st `  B ) )  /\  ( r  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A ) ) )  ->  r  e.  ( 1st `  A
) )
16 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( p  e.  Q.  /\  p  e.  ( 1st `  B ) )  /\  ( r  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A ) ) )  ->  p  e.  ( 1st `  B
) )
1715, 16jca 306 . . . . . . . . . . . 12  |-  ( ( ( p  e.  Q.  /\  p  e.  ( 1st `  B ) )  /\  ( r  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A ) ) )  ->  (
r  e.  ( 1st `  A )  /\  p  e.  ( 1st `  B
) ) )
18 df-iplp 7655 . . . . . . . . . . . . 13  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
19 addclnq 7562 . . . . . . . . . . . . 13  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
2018, 19genpprecll 7701 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( r  e.  ( 1st `  A
)  /\  p  e.  ( 1st `  B ) )  ->  ( r  +Q  p )  e.  ( 1st `  ( A  +P.  B ) ) ) )
2117, 20syl5 32 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( p  e.  Q.  /\  p  e.  ( 1st `  B
) )  /\  (
r  e.  ( 1st `  A )  /\  q  e.  ( 2nd `  A
) ) )  -> 
( r  +Q  p
)  e.  ( 1st `  ( A  +P.  B
) ) ) )
2221imdistani 445 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( p  e. 
Q.  /\  p  e.  ( 1st `  B ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) ) )  -> 
( ( A  e. 
P.  /\  B  e.  P. )  /\  (
r  +Q  p )  e.  ( 1st `  ( A  +P.  B ) ) ) )
23 addclpr 7724 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
24 prop 7662 . . . . . . . . . . . 12  |-  ( ( A  +P.  B )  e.  P.  ->  <. ( 1st `  ( A  +P.  B ) ) ,  ( 2nd `  ( A  +P.  B ) )
>.  e.  P. )
25 prcdnql 7671 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  ( A  +P.  B ) ) ,  ( 2nd `  ( A  +P.  B ) )
>.  e.  P.  /\  (
r  +Q  p )  e.  ( 1st `  ( A  +P.  B ) ) )  ->  ( q  <Q  ( r  +Q  p
)  ->  q  e.  ( 1st `  ( A  +P.  B ) ) ) )
2624, 25sylan 283 . . . . . . . . . . 11  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( r  +Q  p
)  e.  ( 1st `  ( A  +P.  B
) ) )  -> 
( q  <Q  (
r  +Q  p )  ->  q  e.  ( 1st `  ( A  +P.  B ) ) ) )
2723, 26sylan 283 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( r  +Q  p
)  e.  ( 1st `  ( A  +P.  B
) ) )  -> 
( q  <Q  (
r  +Q  p )  ->  q  e.  ( 1st `  ( A  +P.  B ) ) ) )
2822, 27syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( p  e. 
Q.  /\  p  e.  ( 1st `  B ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) ) )  -> 
( q  <Q  (
r  +Q  p )  ->  q  e.  ( 1st `  ( A  +P.  B ) ) ) )
2928anassrs 400 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  ->  (
q  <Q  ( r  +Q  p )  ->  q  e.  ( 1st `  ( A  +P.  B ) ) ) )
3029imp 124 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  /\  q  <Q  ( r  +Q  p
) )  ->  q  e.  ( 1st `  ( A  +P.  B ) ) )
31 rspe 2579 . . . . . . 7  |-  ( ( q  e.  Q.  /\  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  ( A  +P.  B ) ) ) )  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  ( A  +P.  B ) ) ) )
3213, 14, 30, 31syl12anc 1269 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  /\  q  <Q  ( r  +Q  p
) )  ->  E. q  e.  Q.  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  ( A  +P.  B ) ) ) )
33 ltdfpr 7693 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( A  +P.  B )  e.  P. )  -> 
( A  <P  ( A  +P.  B )  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  ( A  +P.  B ) ) ) ) )
3423, 33syldan 282 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  <P  ( A  +P.  B )  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  A
)  /\  q  e.  ( 1st `  ( A  +P.  B ) ) ) ) )
3534ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  /\  q  <Q  ( r  +Q  p
) )  ->  ( A  <P  ( A  +P.  B )  <->  E. q  e.  Q.  ( q  e.  ( 2nd `  A )  /\  q  e.  ( 1st `  ( A  +P.  B ) ) ) ) )
3632, 35mpbird 167 . . . . 5  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  /\  q  <Q  ( r  +Q  p
) )  ->  A  <P  ( A  +P.  B
) )
3736ex 115 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  /\  ( r  e.  ( 1st `  A
)  /\  q  e.  ( 2nd `  A ) ) )  ->  (
q  <Q  ( r  +Q  p )  ->  A  <P  ( A  +P.  B
) ) )
3837rexlimdvva 2656 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  ->  ( E. r  e.  ( 1st `  A
) E. q  e.  ( 2nd `  A
) q  <Q  (
r  +Q  p )  ->  A  <P  ( A  +P.  B ) ) )
398, 38mpd 13 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( p  e.  Q.  /\  p  e.  ( 1st `  B ) ) )  ->  A  <P  ( A  +P.  B ) )
404, 39rexlimddv 2653 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  <P  ( A  +P.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   E.wrex 2509   <.cop 3669   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   1stc1st 6284   2ndc2nd 6285   Q.cnq 7467    +Q cplq 7469    <Q cltq 7472   P.cnp 7478    +P. cpp 7480    <P cltp 7482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-iplp 7655  df-iltp 7657
This theorem is referenced by:  ltexprlemrl  7797  ltaprlem  7805  ltaprg  7806  prplnqu  7807  ltmprr  7829  caucvgprprlemnkltj  7876  caucvgprprlemnkeqj  7877  caucvgprprlemnbj  7880  0lt1sr  7952  recexgt0sr  7960  mulgt0sr  7965  archsr  7969  prsrpos  7972  mappsrprg  7991  pitoregt0  8036
  Copyright terms: Public domain W3C validator