ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz2b2 Unicode version

Theorem eluz2b2 9151
Description: Two ways to say "an integer greater than or equal to 2." (Contributed by Paul Chapman, 23-Nov-2012.)
Assertion
Ref Expression
eluz2b2  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )

Proof of Theorem eluz2b2
StepHypRef Expression
1 eluz2b1 9149 . 2  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  ZZ  /\  1  < 
N ) )
2 1re 7548 . . . . . . 7  |-  1  e.  RR
3 zre 8815 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  RR )
4 ltle 7633 . . . . . . 7  |-  ( ( 1  e.  RR  /\  N  e.  RR )  ->  ( 1  <  N  ->  1  <_  N )
)
52, 3, 4sylancr 406 . . . . . 6  |-  ( N  e.  ZZ  ->  (
1  <  N  ->  1  <_  N ) )
65imdistani 435 . . . . 5  |-  ( ( N  e.  ZZ  /\  1  <  N )  -> 
( N  e.  ZZ  /\  1  <_  N )
)
7 elnnz1 8834 . . . . 5  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  1  <_  N ) )
86, 7sylibr 133 . . . 4  |-  ( ( N  e.  ZZ  /\  1  <  N )  ->  N  e.  NN )
9 simpr 109 . . . 4  |-  ( ( N  e.  ZZ  /\  1  <  N )  -> 
1  <  N )
108, 9jca 301 . . 3  |-  ( ( N  e.  ZZ  /\  1  <  N )  -> 
( N  e.  NN  /\  1  <  N ) )
11 nnz 8830 . . . 4  |-  ( N  e.  NN  ->  N  e.  ZZ )
1211anim1i 334 . . 3  |-  ( ( N  e.  NN  /\  1  <  N )  -> 
( N  e.  ZZ  /\  1  <  N ) )
1310, 12impbii 125 . 2  |-  ( ( N  e.  ZZ  /\  1  <  N )  <->  ( N  e.  NN  /\  1  < 
N ) )
141, 13bitri 183 1  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1439   class class class wbr 3851   ` cfv 5028   RRcr 7410   1c1 7412    < clt 7583    <_ cle 7584   NNcn 8483   2c2 8534   ZZcz 8811   ZZ>=cuz 9080
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-ltadd 7522
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-inn 8484  df-2 8542  df-n0 8735  df-z 8812  df-uz 9081
This theorem is referenced by:  eluz2b3  9152  nprm  11444  nprmi  11445
  Copyright terms: Public domain W3C validator