![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > adantll | Unicode version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
adant2.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
adantll |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | adant2.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan 279 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: ad2antlr 478 ad2ant2l 497 ad2ant2lr 499 3ad2antl3 1128 3adant1l 1191 reu6 2842 sbc2iegf 2947 sbcralt 2953 sbcrext 2954 indifdir 3298 pofun 4194 poinxp 4568 ssimaex 5436 fndmdif 5479 dffo4 5522 fcompt 5544 fconst2g 5589 foco2 5609 foeqcnvco 5645 f1eqcocnv 5646 fliftel1 5649 isores3 5670 acexmid 5727 tfrlemi14d 6184 tfrcl 6215 dom2lem 6620 fiintim 6770 ordiso2 6872 mkvprop 6982 lt2addnq 7160 lt2mulnq 7161 ltexnqq 7164 genpdf 7264 addnqprl 7285 addnqpru 7286 addlocpr 7292 recexprlemopl 7381 caucvgsrlemgt1 7537 add4 7846 cnegex 7863 ltleadd 8127 zextle 9046 peano5uzti 9063 fnn0ind 9071 xrlttr 9474 xaddass 9545 iccshftr 9670 iccshftl 9672 iccdil 9674 icccntr 9676 fzaddel 9732 fzrev 9757 exbtwnzlemshrink 9919 seq3val 10124 iseqf1olemab 10155 exp3vallem 10187 mulexp 10225 expadd 10228 expmul 10231 leexp1a 10241 bccl 10406 hashfacen 10472 ovshftex 10484 2shfti 10496 caucvgre 10645 cvg1nlemcau 10648 resqrexlemcvg 10683 cau3lem 10778 rexico 10885 iooinsup 10938 climmpt 10961 subcn2 10972 climrecvg1n 11009 climcvg1nlem 11010 climcaucn 11012 mertenslem2 11197 eftlcl 11245 reeftlcl 11246 dvdsext 11401 sqoddm1div8z 11431 bezoutlemaz 11537 bezoutr1 11567 dvdslcm 11596 lcmeq0 11598 lcmcl 11599 lcmneg 11601 lcmdvds 11606 coprmgcdb 11615 dvdsprime 11649 cnco 12232 cnss1 12237 tx2cn 12281 upxp 12283 metss 12483 txmetcnp 12507 cncfss 12556 bj-findis 12869 |
Copyright terms: Public domain | W3C validator |