ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2 GIF version

Theorem ineq2 3376
Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
Assertion
Ref Expression
ineq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem ineq2
StepHypRef Expression
1 ineq1 3375 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
2 incom 3373 . 2 (𝐶𝐴) = (𝐴𝐶)
3 incom 3373 . 2 (𝐶𝐵) = (𝐵𝐶)
41, 2, 33eqtr4g 2265 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cin 3173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180
This theorem is referenced by:  ineq12  3377  ineq2i  3379  ineq2d  3382  uneqin  3432  intprg  3932  fiintim  7054  uzin2  11413  inopn  14590  basis1  14634  basis2  14635  baspartn  14637  metreslem  14967  qtopbasss  15108
  Copyright terms: Public domain W3C validator