ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2 GIF version

Theorem ineq2 3359
Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
Assertion
Ref Expression
ineq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem ineq2
StepHypRef Expression
1 ineq1 3358 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
2 incom 3356 . 2 (𝐶𝐴) = (𝐴𝐶)
3 incom 3356 . 2 (𝐶𝐵) = (𝐵𝐶)
41, 2, 33eqtr4g 2254 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cin 3156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163
This theorem is referenced by:  ineq12  3360  ineq2i  3362  ineq2d  3365  uneqin  3415  intprg  3908  fiintim  7001  uzin2  11169  inopn  14323  basis1  14367  basis2  14368  baspartn  14370  metreslem  14700  qtopbasss  14841
  Copyright terms: Public domain W3C validator