ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzin2 Unicode version

Theorem uzin2 11134
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin2  |-  ( ( A  e.  ran  ZZ>=  /\  B  e.  ran  ZZ>= )  -> 
( A  i^i  B
)  e.  ran  ZZ>= )

Proof of Theorem uzin2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 9598 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
2 ffn 5404 . . . 4  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
31, 2ax-mp 5 . . 3  |-  ZZ>=  Fn  ZZ
4 fvelrnb 5605 . . 3  |-  ( ZZ>=  Fn  ZZ  ->  ( A  e.  ran  ZZ>= 
<->  E. x  e.  ZZ  ( ZZ>= `  x )  =  A ) )
53, 4ax-mp 5 . 2  |-  ( A  e.  ran  ZZ>=  <->  E. x  e.  ZZ  ( ZZ>= `  x
)  =  A )
6 fvelrnb 5605 . . 3  |-  ( ZZ>=  Fn  ZZ  ->  ( B  e.  ran  ZZ>= 
<->  E. y  e.  ZZ  ( ZZ>= `  y )  =  B ) )
73, 6ax-mp 5 . 2  |-  ( B  e.  ran  ZZ>=  <->  E. y  e.  ZZ  ( ZZ>= `  y
)  =  B )
8 ineq1 3354 . . 3  |-  ( (
ZZ>= `  x )  =  A  ->  ( ( ZZ>=
`  x )  i^i  ( ZZ>= `  y )
)  =  ( A  i^i  ( ZZ>= `  y
) ) )
98eleq1d 2262 . 2  |-  ( (
ZZ>= `  x )  =  A  ->  ( (
( ZZ>= `  x )  i^i  ( ZZ>= `  y )
)  e.  ran  ZZ>=  <->  ( A  i^i  ( ZZ>= `  y )
)  e.  ran  ZZ>= ) )
10 ineq2 3355 . . 3  |-  ( (
ZZ>= `  y )  =  B  ->  ( A  i^i  ( ZZ>= `  y )
)  =  ( A  i^i  B ) )
1110eleq1d 2262 . 2  |-  ( (
ZZ>= `  y )  =  B  ->  ( ( A  i^i  ( ZZ>= `  y
) )  e.  ran  ZZ>=  <->  ( A  i^i  B )  e. 
ran  ZZ>= ) )
12 uzin 9628 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ZZ>= `  x
)  i^i  ( ZZ>= `  y ) )  =  ( ZZ>= `  if (
x  <_  y , 
y ,  x ) ) )
13 simpr 110 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  y  e.  ZZ )
14 simpl 109 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  e.  ZZ )
15 zdcle 9396 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  -> DECID  x  <_  y )
1613, 14, 15ifcldcd 3594 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  if ( x  <_ 
y ,  y ,  x )  e.  ZZ )
17 fnfvelrn 5691 . . . 4  |-  ( (
ZZ>=  Fn  ZZ  /\  if ( x  <_  y ,  y ,  x )  e.  ZZ )  -> 
( ZZ>= `  if (
x  <_  y , 
y ,  x ) )  e.  ran  ZZ>= )
183, 16, 17sylancr 414 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ZZ>= `  if (
x  <_  y , 
y ,  x ) )  e.  ran  ZZ>= )
1912, 18eqeltrd 2270 . 2  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ZZ>= `  x
)  i^i  ( ZZ>= `  y ) )  e. 
ran  ZZ>= )
205, 7, 9, 11, 192gencl 2793 1  |-  ( ( A  e.  ran  ZZ>=  /\  B  e.  ran  ZZ>= )  -> 
( A  i^i  B
)  e.  ran  ZZ>= )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473    i^i cin 3153   ifcif 3558   ~Pcpw 3602   class class class wbr 4030   ran crn 4661    Fn wfn 5250   -->wf 5251   ` cfv 5255    <_ cle 8057   ZZcz 9320   ZZ>=cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596
This theorem is referenced by:  rexanuz  11135
  Copyright terms: Public domain W3C validator