ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzin2 Unicode version

Theorem uzin2 11413
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin2  |-  ( ( A  e.  ran  ZZ>=  /\  B  e.  ran  ZZ>= )  -> 
( A  i^i  B
)  e.  ran  ZZ>= )

Proof of Theorem uzin2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 9686 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
2 ffn 5445 . . . 4  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
31, 2ax-mp 5 . . 3  |-  ZZ>=  Fn  ZZ
4 fvelrnb 5649 . . 3  |-  ( ZZ>=  Fn  ZZ  ->  ( A  e.  ran  ZZ>= 
<->  E. x  e.  ZZ  ( ZZ>= `  x )  =  A ) )
53, 4ax-mp 5 . 2  |-  ( A  e.  ran  ZZ>=  <->  E. x  e.  ZZ  ( ZZ>= `  x
)  =  A )
6 fvelrnb 5649 . . 3  |-  ( ZZ>=  Fn  ZZ  ->  ( B  e.  ran  ZZ>= 
<->  E. y  e.  ZZ  ( ZZ>= `  y )  =  B ) )
73, 6ax-mp 5 . 2  |-  ( B  e.  ran  ZZ>=  <->  E. y  e.  ZZ  ( ZZ>= `  y
)  =  B )
8 ineq1 3375 . . 3  |-  ( (
ZZ>= `  x )  =  A  ->  ( ( ZZ>=
`  x )  i^i  ( ZZ>= `  y )
)  =  ( A  i^i  ( ZZ>= `  y
) ) )
98eleq1d 2276 . 2  |-  ( (
ZZ>= `  x )  =  A  ->  ( (
( ZZ>= `  x )  i^i  ( ZZ>= `  y )
)  e.  ran  ZZ>=  <->  ( A  i^i  ( ZZ>= `  y )
)  e.  ran  ZZ>= ) )
10 ineq2 3376 . . 3  |-  ( (
ZZ>= `  y )  =  B  ->  ( A  i^i  ( ZZ>= `  y )
)  =  ( A  i^i  B ) )
1110eleq1d 2276 . 2  |-  ( (
ZZ>= `  y )  =  B  ->  ( ( A  i^i  ( ZZ>= `  y
) )  e.  ran  ZZ>=  <->  ( A  i^i  B )  e. 
ran  ZZ>= ) )
12 uzin 9716 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ZZ>= `  x
)  i^i  ( ZZ>= `  y ) )  =  ( ZZ>= `  if (
x  <_  y , 
y ,  x ) ) )
13 simpr 110 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  y  e.  ZZ )
14 simpl 109 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  e.  ZZ )
15 zdcle 9484 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  -> DECID  x  <_  y )
1613, 14, 15ifcldcd 3617 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  if ( x  <_ 
y ,  y ,  x )  e.  ZZ )
17 fnfvelrn 5735 . . . 4  |-  ( (
ZZ>=  Fn  ZZ  /\  if ( x  <_  y ,  y ,  x )  e.  ZZ )  -> 
( ZZ>= `  if (
x  <_  y , 
y ,  x ) )  e.  ran  ZZ>= )
183, 16, 17sylancr 414 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ZZ>= `  if (
x  <_  y , 
y ,  x ) )  e.  ran  ZZ>= )
1912, 18eqeltrd 2284 . 2  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ZZ>= `  x
)  i^i  ( ZZ>= `  y ) )  e. 
ran  ZZ>= )
205, 7, 9, 11, 192gencl 2810 1  |-  ( ( A  e.  ran  ZZ>=  /\  B  e.  ran  ZZ>= )  -> 
( A  i^i  B
)  e.  ran  ZZ>= )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   E.wrex 2487    i^i cin 3173   ifcif 3579   ~Pcpw 3626   class class class wbr 4059   ran crn 4694    Fn wfn 5285   -->wf 5286   ` cfv 5290    <_ cle 8143   ZZcz 9407   ZZ>=cuz 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684
This theorem is referenced by:  rexanuz  11414
  Copyright terms: Public domain W3C validator