ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzin2 Unicode version

Theorem uzin2 11331
Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin2  |-  ( ( A  e.  ran  ZZ>=  /\  B  e.  ran  ZZ>= )  -> 
( A  i^i  B
)  e.  ran  ZZ>= )

Proof of Theorem uzin2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 9653 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
2 ffn 5427 . . . 4  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
31, 2ax-mp 5 . . 3  |-  ZZ>=  Fn  ZZ
4 fvelrnb 5628 . . 3  |-  ( ZZ>=  Fn  ZZ  ->  ( A  e.  ran  ZZ>= 
<->  E. x  e.  ZZ  ( ZZ>= `  x )  =  A ) )
53, 4ax-mp 5 . 2  |-  ( A  e.  ran  ZZ>=  <->  E. x  e.  ZZ  ( ZZ>= `  x
)  =  A )
6 fvelrnb 5628 . . 3  |-  ( ZZ>=  Fn  ZZ  ->  ( B  e.  ran  ZZ>= 
<->  E. y  e.  ZZ  ( ZZ>= `  y )  =  B ) )
73, 6ax-mp 5 . 2  |-  ( B  e.  ran  ZZ>=  <->  E. y  e.  ZZ  ( ZZ>= `  y
)  =  B )
8 ineq1 3367 . . 3  |-  ( (
ZZ>= `  x )  =  A  ->  ( ( ZZ>=
`  x )  i^i  ( ZZ>= `  y )
)  =  ( A  i^i  ( ZZ>= `  y
) ) )
98eleq1d 2274 . 2  |-  ( (
ZZ>= `  x )  =  A  ->  ( (
( ZZ>= `  x )  i^i  ( ZZ>= `  y )
)  e.  ran  ZZ>=  <->  ( A  i^i  ( ZZ>= `  y )
)  e.  ran  ZZ>= ) )
10 ineq2 3368 . . 3  |-  ( (
ZZ>= `  y )  =  B  ->  ( A  i^i  ( ZZ>= `  y )
)  =  ( A  i^i  B ) )
1110eleq1d 2274 . 2  |-  ( (
ZZ>= `  y )  =  B  ->  ( ( A  i^i  ( ZZ>= `  y
) )  e.  ran  ZZ>=  <->  ( A  i^i  B )  e. 
ran  ZZ>= ) )
12 uzin 9683 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ZZ>= `  x
)  i^i  ( ZZ>= `  y ) )  =  ( ZZ>= `  if (
x  <_  y , 
y ,  x ) ) )
13 simpr 110 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  y  e.  ZZ )
14 simpl 109 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  x  e.  ZZ )
15 zdcle 9451 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  -> DECID  x  <_  y )
1613, 14, 15ifcldcd 3608 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  if ( x  <_ 
y ,  y ,  x )  e.  ZZ )
17 fnfvelrn 5714 . . . 4  |-  ( (
ZZ>=  Fn  ZZ  /\  if ( x  <_  y ,  y ,  x )  e.  ZZ )  -> 
( ZZ>= `  if (
x  <_  y , 
y ,  x ) )  e.  ran  ZZ>= )
183, 16, 17sylancr 414 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ZZ>= `  if (
x  <_  y , 
y ,  x ) )  e.  ran  ZZ>= )
1912, 18eqeltrd 2282 . 2  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ZZ>= `  x
)  i^i  ( ZZ>= `  y ) )  e. 
ran  ZZ>= )
205, 7, 9, 11, 192gencl 2805 1  |-  ( ( A  e.  ran  ZZ>=  /\  B  e.  ran  ZZ>= )  -> 
( A  i^i  B
)  e.  ran  ZZ>= )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   E.wrex 2485    i^i cin 3165   ifcif 3571   ~Pcpw 3616   class class class wbr 4045   ran crn 4677    Fn wfn 5267   -->wf 5268   ` cfv 5272    <_ cle 8110   ZZcz 9374   ZZ>=cuz 9650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651
This theorem is referenced by:  rexanuz  11332
  Copyright terms: Public domain W3C validator