ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metreslem Unicode version

Theorem metreslem 14967
Description: Lemma for metres 14970. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
metreslem  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  ( R  X.  R ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )

Proof of Theorem metreslem
StepHypRef Expression
1 resdmres 5193 . 2  |-  ( D  |`  dom  ( D  |`  ( R  X.  R
) ) )  =  ( D  |`  ( R  X.  R ) )
2 ineq2 3376 . . . 4  |-  ( dom 
D  =  ( X  X.  X )  -> 
( ( R  X.  R )  i^i  dom  D )  =  ( ( R  X.  R )  i^i  ( X  X.  X ) ) )
3 dmres 4999 . . . 4  |-  dom  ( D  |`  ( R  X.  R ) )  =  ( ( R  X.  R )  i^i  dom  D )
4 inxp 4830 . . . . 5  |-  ( ( X  X.  X )  i^i  ( R  X.  R ) )  =  ( ( X  i^i  R )  X.  ( X  i^i  R ) )
5 incom 3373 . . . . 5  |-  ( ( X  X.  X )  i^i  ( R  X.  R ) )  =  ( ( R  X.  R )  i^i  ( X  X.  X ) )
64, 5eqtr3i 2230 . . . 4  |-  ( ( X  i^i  R )  X.  ( X  i^i  R ) )  =  ( ( R  X.  R
)  i^i  ( X  X.  X ) )
72, 3, 63eqtr4g 2265 . . 3  |-  ( dom 
D  =  ( X  X.  X )  ->  dom  ( D  |`  ( R  X.  R ) )  =  ( ( X  i^i  R )  X.  ( X  i^i  R
) ) )
87reseq2d 4978 . 2  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  dom  ( D  |`  ( R  X.  R ) ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )
91, 8eqtr3id 2254 1  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  ( R  X.  R ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    i^i cin 3173    X. cxp 4691   dom cdm 4693    |` cres 4695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705
This theorem is referenced by:  xmetres  14969  metres  14970
  Copyright terms: Public domain W3C validator