ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metreslem Unicode version

Theorem metreslem 12751
Description: Lemma for metres 12754. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
metreslem  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  ( R  X.  R ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )

Proof of Theorem metreslem
StepHypRef Expression
1 resdmres 5076 . 2  |-  ( D  |`  dom  ( D  |`  ( R  X.  R
) ) )  =  ( D  |`  ( R  X.  R ) )
2 ineq2 3302 . . . 4  |-  ( dom 
D  =  ( X  X.  X )  -> 
( ( R  X.  R )  i^i  dom  D )  =  ( ( R  X.  R )  i^i  ( X  X.  X ) ) )
3 dmres 4886 . . . 4  |-  dom  ( D  |`  ( R  X.  R ) )  =  ( ( R  X.  R )  i^i  dom  D )
4 inxp 4719 . . . . 5  |-  ( ( X  X.  X )  i^i  ( R  X.  R ) )  =  ( ( X  i^i  R )  X.  ( X  i^i  R ) )
5 incom 3299 . . . . 5  |-  ( ( X  X.  X )  i^i  ( R  X.  R ) )  =  ( ( R  X.  R )  i^i  ( X  X.  X ) )
64, 5eqtr3i 2180 . . . 4  |-  ( ( X  i^i  R )  X.  ( X  i^i  R ) )  =  ( ( R  X.  R
)  i^i  ( X  X.  X ) )
72, 3, 63eqtr4g 2215 . . 3  |-  ( dom 
D  =  ( X  X.  X )  ->  dom  ( D  |`  ( R  X.  R ) )  =  ( ( X  i^i  R )  X.  ( X  i^i  R
) ) )
87reseq2d 4865 . 2  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  dom  ( D  |`  ( R  X.  R ) ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )
91, 8eqtr3id 2204 1  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  ( R  X.  R ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    i^i cin 3101    X. cxp 4583   dom cdm 4585    |` cres 4587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-xp 4591  df-rel 4592  df-cnv 4593  df-dm 4595  df-rn 4596  df-res 4597
This theorem is referenced by:  xmetres  12753  metres  12754
  Copyright terms: Public domain W3C validator