ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metreslem Unicode version

Theorem metreslem 13883
Description: Lemma for metres 13886. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
metreslem  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  ( R  X.  R ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )

Proof of Theorem metreslem
StepHypRef Expression
1 resdmres 5121 . 2  |-  ( D  |`  dom  ( D  |`  ( R  X.  R
) ) )  =  ( D  |`  ( R  X.  R ) )
2 ineq2 3331 . . . 4  |-  ( dom 
D  =  ( X  X.  X )  -> 
( ( R  X.  R )  i^i  dom  D )  =  ( ( R  X.  R )  i^i  ( X  X.  X ) ) )
3 dmres 4929 . . . 4  |-  dom  ( D  |`  ( R  X.  R ) )  =  ( ( R  X.  R )  i^i  dom  D )
4 inxp 4762 . . . . 5  |-  ( ( X  X.  X )  i^i  ( R  X.  R ) )  =  ( ( X  i^i  R )  X.  ( X  i^i  R ) )
5 incom 3328 . . . . 5  |-  ( ( X  X.  X )  i^i  ( R  X.  R ) )  =  ( ( R  X.  R )  i^i  ( X  X.  X ) )
64, 5eqtr3i 2200 . . . 4  |-  ( ( X  i^i  R )  X.  ( X  i^i  R ) )  =  ( ( R  X.  R
)  i^i  ( X  X.  X ) )
72, 3, 63eqtr4g 2235 . . 3  |-  ( dom 
D  =  ( X  X.  X )  ->  dom  ( D  |`  ( R  X.  R ) )  =  ( ( X  i^i  R )  X.  ( X  i^i  R
) ) )
87reseq2d 4908 . 2  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  dom  ( D  |`  ( R  X.  R ) ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )
91, 8eqtr3id 2224 1  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  ( R  X.  R ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    i^i cin 3129    X. cxp 4625   dom cdm 4627    |` cres 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-cnv 4635  df-dm 4637  df-rn 4638  df-res 4639
This theorem is referenced by:  xmetres  13885  metres  13886
  Copyright terms: Public domain W3C validator