ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metreslem Unicode version

Theorem metreslem 14852
Description: Lemma for metres 14855. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
metreslem  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  ( R  X.  R ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )

Proof of Theorem metreslem
StepHypRef Expression
1 resdmres 5174 . 2  |-  ( D  |`  dom  ( D  |`  ( R  X.  R
) ) )  =  ( D  |`  ( R  X.  R ) )
2 ineq2 3368 . . . 4  |-  ( dom 
D  =  ( X  X.  X )  -> 
( ( R  X.  R )  i^i  dom  D )  =  ( ( R  X.  R )  i^i  ( X  X.  X ) ) )
3 dmres 4980 . . . 4  |-  dom  ( D  |`  ( R  X.  R ) )  =  ( ( R  X.  R )  i^i  dom  D )
4 inxp 4812 . . . . 5  |-  ( ( X  X.  X )  i^i  ( R  X.  R ) )  =  ( ( X  i^i  R )  X.  ( X  i^i  R ) )
5 incom 3365 . . . . 5  |-  ( ( X  X.  X )  i^i  ( R  X.  R ) )  =  ( ( R  X.  R )  i^i  ( X  X.  X ) )
64, 5eqtr3i 2228 . . . 4  |-  ( ( X  i^i  R )  X.  ( X  i^i  R ) )  =  ( ( R  X.  R
)  i^i  ( X  X.  X ) )
72, 3, 63eqtr4g 2263 . . 3  |-  ( dom 
D  =  ( X  X.  X )  ->  dom  ( D  |`  ( R  X.  R ) )  =  ( ( X  i^i  R )  X.  ( X  i^i  R
) ) )
87reseq2d 4959 . 2  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  dom  ( D  |`  ( R  X.  R ) ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )
91, 8eqtr3id 2252 1  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  ( R  X.  R ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    i^i cin 3165    X. cxp 4673   dom cdm 4675    |` cres 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687
This theorem is referenced by:  xmetres  14854  metres  14855
  Copyright terms: Public domain W3C validator