ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isabli Unicode version

Theorem isabli 13108
Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.)
Hypotheses
Ref Expression
isabli.g  |-  G  e. 
Grp
isabli.b  |-  B  =  ( Base `  G
)
isabli.p  |-  .+  =  ( +g  `  G )
isabli.c  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  =  ( y 
.+  x ) )
Assertion
Ref Expression
isabli  |-  G  e. 
Abel
Distinct variable groups:    x, y, B   
x, G, y
Allowed substitution hints:    .+ ( x, y)

Proof of Theorem isabli
StepHypRef Expression
1 isabli.g . 2  |-  G  e. 
Grp
2 isabli.c . . 3  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  =  ( y 
.+  x ) )
32rgen2 2563 . 2  |-  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x )
4 isabli.b . . 3  |-  B  =  ( Base `  G
)
5 isabli.p . . 3  |-  .+  =  ( +g  `  G )
64, 5isabl2 13102 . 2  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
71, 3, 6mpbir2an 942 1  |-  G  e. 
Abel
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   Grpcgrp 12882   Abelcabl 13094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-un 3135  df-in 3137  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880  df-grp 12885  df-cmn 13095  df-abl 13096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator