ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isabli Unicode version

Theorem isabli 13636
Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.)
Hypotheses
Ref Expression
isabli.g  |-  G  e. 
Grp
isabli.b  |-  B  =  ( Base `  G
)
isabli.p  |-  .+  =  ( +g  `  G )
isabli.c  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  =  ( y 
.+  x ) )
Assertion
Ref Expression
isabli  |-  G  e. 
Abel
Distinct variable groups:    x, y, B   
x, G, y
Allowed substitution hints:    .+ ( x, y)

Proof of Theorem isabli
StepHypRef Expression
1 isabli.g . 2  |-  G  e. 
Grp
2 isabli.c . . 3  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  =  ( y 
.+  x ) )
32rgen2 2592 . 2  |-  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x )
4 isabli.b . . 3  |-  B  =  ( Base `  G
)
5 isabli.p . . 3  |-  .+  =  ( +g  `  G )
64, 5isabl2 13630 . 2  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
71, 3, 6mpbir2an 945 1  |-  G  e. 
Abel
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   Grpcgrp 13332   Abelcabl 13621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947  df-grp 13335  df-cmn 13622  df-abl 13623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator