ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpmndd Unicode version

Theorem grpmndd 13541
Description: A group is a monoid. (Contributed by SN, 1-Jun-2024.)
Hypothesis
Ref Expression
grpmndd.1  |-  ( ph  ->  G  e.  Grp )
Assertion
Ref Expression
grpmndd  |-  ( ph  ->  G  e.  Mnd )

Proof of Theorem grpmndd
StepHypRef Expression
1 grpmndd.1 . 2  |-  ( ph  ->  G  e.  Grp )
2 grpmnd 13535 . 2  |-  ( G  e.  Grp  ->  G  e.  Mnd )
31, 2syl 14 1  |-  ( ph  ->  G  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   Mndcmnd 13444   Grpcgrp 13528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003  df-grp 13531
This theorem is referenced by:  grpmgmd  13554  hashfingrpnn  13564  ghmgrp  13650  mulgdirlem  13685  ghmmhm  13785  isabld  13831  ringmnd  13964  unitabl  14075  unitsubm  14077  lmodvsmmulgdi  14281
  Copyright terms: Public domain W3C validator