Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isgrpd2 | Unicode version |
Description: Deduce a group from its properties. (negative) is normally dependent on i.e. read it as . Note: normally we don't use a antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2175, but we make an exception for theorems such as isgrpd2 12757 and ismndd 12702 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.) |
Ref | Expression |
---|---|
isgrpd2.b | |
isgrpd2.p | |
isgrpd2.z | |
isgrpd2.g | |
isgrpd2.n | |
isgrpd2.j |
Ref | Expression |
---|---|
isgrpd2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpd2.b | . 2 | |
2 | isgrpd2.p | . 2 | |
3 | isgrpd2.z | . 2 | |
4 | isgrpd2.g | . 2 | |
5 | isgrpd2.n | . . 3 | |
6 | isgrpd2.j | . . 3 | |
7 | oveq1 5872 | . . . . 5 | |
8 | 7 | eqeq1d 2184 | . . . 4 |
9 | 8 | rspcev 2839 | . . 3 |
10 | 5, 6, 9 | syl2anc 411 | . 2 |
11 | 1, 2, 3, 4, 10 | isgrpd2e 12756 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wcel 2146 wrex 2454 cfv 5208 (class class class)co 5865 cbs 12427 cplusg 12491 c0g 12625 cmnd 12681 cgrp 12737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 df-grp 12740 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |