Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isgrpd2 | Unicode version |
Description: Deduce a group from its properties. (negative) is normally dependent on i.e. read it as . Note: normally we don't use a antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2170, but we make an exception for theorems such as isgrpd2 12727 and ismndd 12673 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.) |
Ref | Expression |
---|---|
isgrpd2.b | |
isgrpd2.p | |
isgrpd2.z | |
isgrpd2.g | |
isgrpd2.n | |
isgrpd2.j |
Ref | Expression |
---|---|
isgrpd2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpd2.b | . 2 | |
2 | isgrpd2.p | . 2 | |
3 | isgrpd2.z | . 2 | |
4 | isgrpd2.g | . 2 | |
5 | isgrpd2.n | . . 3 | |
6 | isgrpd2.j | . . 3 | |
7 | oveq1 5860 | . . . . 5 | |
8 | 7 | eqeq1d 2179 | . . . 4 |
9 | 8 | rspcev 2834 | . . 3 |
10 | 5, 6, 9 | syl2anc 409 | . 2 |
11 | 1, 2, 3, 4, 10 | isgrpd2e 12726 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wrex 2449 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 c0g 12596 cmnd 12652 cgrp 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-grp 12711 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |