ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrpd2 GIF version

Theorem isgrpd2 13093
Description: Deduce a group from its properties. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we don't use a 𝜑 antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2193, but we make an exception for theorems such as isgrpd2 13093 and ismndd 13018 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.)
Hypotheses
Ref Expression
isgrpd2.b (𝜑𝐵 = (Base‘𝐺))
isgrpd2.p (𝜑+ = (+g𝐺))
isgrpd2.z (𝜑0 = (0g𝐺))
isgrpd2.g (𝜑𝐺 ∈ Mnd)
isgrpd2.n ((𝜑𝑥𝐵) → 𝑁𝐵)
isgrpd2.j ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )
Assertion
Ref Expression
isgrpd2 (𝜑𝐺 ∈ Grp)
Distinct variable groups:   𝑥, +   𝑥,𝐵   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝑁(𝑥)   0 (𝑥)

Proof of Theorem isgrpd2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isgrpd2.b . 2 (𝜑𝐵 = (Base‘𝐺))
2 isgrpd2.p . 2 (𝜑+ = (+g𝐺))
3 isgrpd2.z . 2 (𝜑0 = (0g𝐺))
4 isgrpd2.g . 2 (𝜑𝐺 ∈ Mnd)
5 isgrpd2.n . . 3 ((𝜑𝑥𝐵) → 𝑁𝐵)
6 isgrpd2.j . . 3 ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )
7 oveq1 5925 . . . . 5 (𝑦 = 𝑁 → (𝑦 + 𝑥) = (𝑁 + 𝑥))
87eqeq1d 2202 . . . 4 (𝑦 = 𝑁 → ((𝑦 + 𝑥) = 0 ↔ (𝑁 + 𝑥) = 0 ))
98rspcev 2864 . . 3 ((𝑁𝐵 ∧ (𝑁 + 𝑥) = 0 ) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
105, 6, 9syl2anc 411 . 2 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
111, 2, 3, 4, 10isgrpd2e 13092 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wrex 2473  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  0gc0g 12867  Mndcmnd 12997  Grpcgrp 13072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-grp 13075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator