| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > isgrpd2 | GIF version | ||
| Description: Deduce a group from its properties. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we don't use a 𝜑 antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2196, but we make an exception for theorems such as isgrpd2 13153 and ismndd 13078 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.) | 
| Ref | Expression | 
|---|---|
| isgrpd2.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | 
| isgrpd2.p | ⊢ (𝜑 → + = (+g‘𝐺)) | 
| isgrpd2.z | ⊢ (𝜑 → 0 = (0g‘𝐺)) | 
| isgrpd2.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) | 
| isgrpd2.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) | 
| isgrpd2.j | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) | 
| Ref | Expression | 
|---|---|
| isgrpd2 | ⊢ (𝜑 → 𝐺 ∈ Grp) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isgrpd2.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 2 | isgrpd2.p | . 2 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 3 | isgrpd2.z | . 2 ⊢ (𝜑 → 0 = (0g‘𝐺)) | |
| 4 | isgrpd2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 5 | isgrpd2.n | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) | |
| 6 | isgrpd2.j | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) | |
| 7 | oveq1 5929 | . . . . 5 ⊢ (𝑦 = 𝑁 → (𝑦 + 𝑥) = (𝑁 + 𝑥)) | |
| 8 | 7 | eqeq1d 2205 | . . . 4 ⊢ (𝑦 = 𝑁 → ((𝑦 + 𝑥) = 0 ↔ (𝑁 + 𝑥) = 0 )) | 
| 9 | 8 | rspcev 2868 | . . 3 ⊢ ((𝑁 ∈ 𝐵 ∧ (𝑁 + 𝑥) = 0 ) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) | 
| 10 | 5, 6, 9 | syl2anc 411 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) | 
| 11 | 1, 2, 3, 4, 10 | isgrpd2e 13152 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 0gc0g 12927 Mndcmnd 13057 Grpcgrp 13132 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-grp 13135 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |