HomeHome Intuitionistic Logic Explorer
Theorem List (p. 129 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12801-12900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlimcmpted 12801* Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
 |-  ( ph  ->  A  C_ 
 CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  (
 ( ph  /\  z  e.  A )  ->  D  e.  CC )   =>    |-  ( ph  ->  ( C  e.  ( (
 z  e.  A  |->  D ) lim CC  B )  <-> 
 ( C  e.  CC  /\ 
 A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z #  B  /\  ( abs `  ( z  -  B ) )  <  y ) 
 ->  ( abs `  ( D  -  C ) )  <  x ) ) ) )
 
Theoremlimcimolemlt 12802* Lemma for limcimo 12803. (Contributed by Jim Kingdon, 3-Jul-2023.)
 |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  ( Kt  S ) )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )   &    |-  K  =  ( MetOpen `  ( abs  o. 
 -  ) )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  X  e.  ( F lim CC  B ) )   &    |-  ( ph  ->  Y  e.  ( F lim CC  B ) )   &    |-  ( ph  ->  A. z  e.  A  ( ( z #  B  /\  ( abs `  (
 z  -  B ) )  <  D ) 
 ->  ( abs `  (
 ( F `  z
 )  -  X ) )  <  ( ( abs `  ( X  -  Y ) )  / 
 2 ) ) )   &    |-  ( ph  ->  G  e.  RR+ )   &    |-  ( ph  ->  A. w  e.  A  ( ( w #  B  /\  ( abs `  ( w  -  B ) )  <  G )  ->  ( abs `  ( ( F `  w )  -  Y ) )  <  ( ( abs `  ( X  -  Y ) )  / 
 2 ) ) )   =>    |-  ( ph  ->  ( abs `  ( X  -  Y ) )  <  ( abs `  ( X  -  Y ) ) )
 
Theoremlimcimo 12803* Conditions which ensure there is at most one limit value of  F at  B. (Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon, 8-Jul-2023.)
 |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  ( Kt  S ) )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  { q  e.  C  |  q #  B }  C_  A )   &    |-  K  =  ( MetOpen `  ( abs  o. 
 -  ) )   =>    |-  ( ph  ->  E* x  x  e.  ( F lim CC  B ) )
 
Theoremlimcresi 12804 Any limit of  F is also a limit of the restriction of  F. (Contributed by Mario Carneiro, 28-Dec-2016.)
 |-  ( F lim CC  B )  C_  ( ( F  |`  C ) lim CC  B )
 
Theoremcnplimcim 12805 If a function is continuous at  B, its limit at  B equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  A )   =>    |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B ) 
 ->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B ) ) ) )
 
Theoremcnplimclemle 12806 Lemma for cnplimccntop 12808. Satisfying the epsilon condition for continuity. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  A )   &    |-  ( ph  ->  A 
 C_  CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  ( F `  B )  e.  ( F lim CC  B ) )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  Z  e.  A )   &    |-  (
 ( ph  /\  Z #  B  /\  ( abs `  ( Z  -  B ) )  <  D )  ->  ( abs `  ( ( F `  Z )  -  ( F `  B ) ) )  <  ( E  /  2 ) )   &    |-  ( ph  ->  ( abs `  ( Z  -  B ) )  <  D )   =>    |-  ( ph  ->  ( abs `  ( ( F `  Z )  -  ( F `  B ) ) )  <  E )
 
Theoremcnplimclemr 12807 Lemma for cnplimccntop 12808. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  A )   &    |-  ( ph  ->  A 
 C_  CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  ( F `  B )  e.  ( F lim CC  B ) )   =>    |-  ( ph  ->  F  e.  ( ( J  CnP  K ) `  B ) )
 
Theoremcnplimccntop 12808 A function is continuous at  B iff its limit at  B equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  A )   =>    |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <-> 
 ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B ) ) ) )
 
Theoremcnlimcim 12809* If  F is a continuous function, the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.)
 |-  ( A  C_  CC  ->  ( F  e.  ( A -cn-> CC )  ->  ( F : A --> CC  /\  A. x  e.  A  ( F `  x )  e.  ( F lim CC  x ) ) ) )
 
Theoremcnlimc 12810*  F is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.)
 |-  ( A  C_  CC  ->  ( F  e.  ( A -cn-> CC )  <->  ( F : A
 --> CC  /\  A. x  e.  A  ( F `  x )  e.  ( F lim CC  x ) ) ) )
 
Theoremcnlimci 12811 If  F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
 |-  ( ph  ->  F  e.  ( A -cn-> D ) )   &    |-  ( ph  ->  B  e.  A )   =>    |-  ( ph  ->  ( F `  B )  e.  ( F lim CC  B ) )
 
Theoremcnmptlimc 12812* If  F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016.)
 |-  ( ph  ->  ( x  e.  A  |->  X )  e.  ( A -cn-> D ) )   &    |-  ( ph  ->  B  e.  A )   &    |-  ( x  =  B  ->  X  =  Y )   =>    |-  ( ph  ->  Y  e.  ( ( x  e.  A  |->  X ) lim
 CC  B ) )
 
Theoremlimccnpcntop 12813 If the limit of  F at  B is  C and  G is continuous at  C, then the limit of  G  o.  F at  B is  G ( C ). (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 18-Jun-2023.)
 |-  ( ph  ->  F : A --> D )   &    |-  ( ph  ->  D  C_  CC )   &    |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  J  =  ( Kt  D )   &    |-  ( ph  ->  C  e.  ( F lim CC  B ) )   &    |-  ( ph  ->  G  e.  (
 ( J  CnP  K ) `  C ) )   =>    |-  ( ph  ->  ( G `  C )  e.  (
 ( G  o.  F ) lim CC  B ) )
 
Theoremlimccnp2lem 12814* Lemma for limccnp2cntop 12815. This is most of the result, expressed in epsilon-delta form, with a large number of hypotheses so that lengthy expressions do not need to be repeated. (Contributed by Jim Kingdon, 9-Nov-2023.)
 |-  ( ( ph  /\  x  e.  A )  ->  R  e.  X )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  S  e.  Y )   &    |-  ( ph  ->  X  C_  CC )   &    |-  ( ph  ->  Y  C_ 
 CC )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )   &    |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim
 CC  B ) )   &    |-  ( ph  ->  D  e.  ( ( x  e.  A  |->  S ) lim CC  B ) )   &    |-  ( ph  ->  H  e.  (
 ( J  CnP  K ) `  <. C ,  D >. ) )   &    |-  F/ x ph   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  L  e.  RR+ )   &    |-  ( ph  ->  A. r  e.  X  A. s  e.  Y  (
 ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs 
 o.  -  )  |`  ( Y  X.  Y ) ) s )  <  L )  ->  ( ( C H D ) ( abs  o.  -  )
 ( r H s ) )  <  E ) )   &    |-  ( ph  ->  F  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  F )  ->  ( abs `  ( R  -  C ) )  <  L ) )   &    |-  ( ph  ->  G  e.  RR+ )   &    |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  G )  ->  ( abs `  ( S  -  D ) )  <  L ) )   =>    |-  ( ph  ->  E. d  e.  RR+  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  d )  ->  ( abs `  ( ( R H S )  -  ( C H D ) ) )  <  E ) )
 
Theoremlimccnp2cntop 12815* The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 14-Nov-2023.)
 |-  ( ( ph  /\  x  e.  A )  ->  R  e.  X )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  S  e.  Y )   &    |-  ( ph  ->  X  C_  CC )   &    |-  ( ph  ->  Y  C_ 
 CC )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )   &    |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim
 CC  B ) )   &    |-  ( ph  ->  D  e.  ( ( x  e.  A  |->  S ) lim CC  B ) )   &    |-  ( ph  ->  H  e.  (
 ( J  CnP  K ) `  <. C ,  D >. ) )   =>    |-  ( ph  ->  ( C H D )  e.  ( ( x  e.  A  |->  ( R H S ) ) lim CC  B ) )
 
Theoremlimccoap 12816* Composition of two limits. This theorem is only usable in the case where  x #  X implies R(x) #  C so it is less general than might appear at first. (Contributed by Mario Carneiro, 29-Dec-2016.) (Revised by Jim Kingdon, 18-Dec-2023.)
 |-  ( ( ph  /\  x  e.  { w  e.  A  |  w #  X }
 )  ->  R  e.  { w  e.  B  |  w #  C } )   &    |-  (
 ( ph  /\  y  e. 
 { w  e.  B  |  w #  C }
 )  ->  S  e.  CC )   &    |-  ( ph  ->  C  e.  ( ( x  e.  { w  e.  A  |  w #  X }  |->  R ) lim CC  X ) )   &    |-  ( ph  ->  D  e.  (
 ( y  e.  { w  e.  B  |  w #  C }  |->  S ) lim
 CC  C ) )   &    |-  ( y  =  R  ->  S  =  T )   =>    |-  ( ph  ->  D  e.  ( ( x  e. 
 { w  e.  A  |  w #  X }  |->  T ) lim CC  X ) )
 
Theoremreldvg 12817 The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 25-Jun-2023.)
 |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S ) ) 
 ->  Rel  ( S  _D  F ) )
 
Theoremdvlemap 12818* Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
 |-  ( ph  ->  F : D --> CC )   &    |-  ( ph  ->  D  C_  CC )   &    |-  ( ph  ->  B  e.  D )   =>    |-  ( ( ph  /\  A  e.  { w  e.  D  |  w #  B }
 )  ->  ( (
 ( F `  A )  -  ( F `  B ) )  /  ( A  -  B ) )  e.  CC )
 
Theoremdvfvalap 12819* Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
 |-  T  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( ( S  _D  F )  = 
 U_ x  e.  (
 ( int `  T ) `  A ) ( { x }  X.  (
 ( z  e.  { w  e.  A  |  w #  x }  |->  ( ( ( F `  z
 )  -  ( F `
  x ) ) 
 /  ( z  -  x ) ) ) lim
 CC  x ) ) 
 /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A )  X.  CC ) ) )
 
Theoremeldvap 12820* The differentiable predicate. A function  F is differentiable at  B with derivative  C iff  F is defined in a neighborhood of  B and the difference quotient has limit  C at  B. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
 |-  T  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  G  =  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( ( F `  z )  -  ( F `  B ) )  /  ( z  -  B ) ) )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  S )   =>    |-  ( ph  ->  ( B ( S  _D  F ) C  <->  ( B  e.  ( ( int `  T ) `  A )  /\  C  e.  ( G lim CC  B ) ) ) )
 
Theoremdvcl 12821 The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  S )   =>    |-  ( ( ph  /\  B ( S  _D  F ) C )  ->  C  e.  CC )
 
Theoremdvbssntrcntop 12822 The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  S )   &    |-  J  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  dom  ( S  _D  F )  C_  ( ( int `  J ) `  A ) )
 
Theoremdvbss 12823 The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ph  ->  F : A --> CC )   &    |-  ( ph  ->  A  C_  S )   =>    |-  ( ph  ->  dom  ( S  _D  F )  C_  A )
 
Theoremdvbsssg 12824 The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
 |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S ) ) 
 ->  dom  ( S  _D  F )  C_  S )
 
Theoremrecnprss 12825 Both  RR and  CC are subsets of  CC. (Contributed by Mario Carneiro, 10-Feb-2015.)
 |-  ( S  e.  { RR ,  CC }  ->  S 
 C_  CC )
 
Theoremdvfgg 12826 Explicitly write out the functionality condition on derivative for  S  =  RR and 
CC. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
 |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC 
 ^pm  S ) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
 
Theoremdvfpm 12827 The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 28-Jul-2023.)
 |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR 
 _D  F ) --> CC )
 
Theoremdvfcnpm 12828 The derivative is a function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jul-2023.)
 |-  ( F  e.  ( CC  ^pm  CC )  ->  ( CC  _D  F ) : dom  ( CC 
 _D  F ) --> CC )
 
Theoremdvidlemap 12829* Lemma for dvid 12831 and dvconst 12830. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( ph  ->  F : CC --> CC )   &    |-  (
 ( ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z #  x ) )  ->  ( ( ( F `  z
 )  -  ( F `
  x ) ) 
 /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( CC  _D  F )  =  ( CC  X.  { B }
 ) )
 
Theoremdvconst 12830 Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( A  e.  CC  ->  ( CC  _D  ( CC  X.  { A }
 ) )  =  ( CC  X.  { 0 } ) )
 
Theoremdvid 12831 Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( CC  _D  (  _I  |`  CC ) )  =  ( CC  X.  { 1 } )
 
Theoremdvcnp2cntop 12832 A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
 |-  J  =  ( Kt  A )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ( ( S 
 C_  CC  /\  F : A
 --> CC  /\  A  C_  S )  /\  B  e.  dom  ( S  _D  F ) )  ->  F  e.  ( ( J  CnP  K ) `  B ) )
 
Theoremdvcn 12833 A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.)
 |-  ( ( ( S 
 C_  CC  /\  F : A
 --> CC  /\  A  C_  S )  /\  dom  ( S  _D  F )  =  A )  ->  F  e.  ( A -cn-> CC )
 )
 
Theoremdvaddxxbr 12834 The sum rule for derivatives at a point. That is, if the derivative of  F at  C is  K and the derivative of  G at  C is  L, then the derivative of the pointwise sum of those two functions at  C is  K  +  L. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  C ( S  _D  F ) K )   &    |-  ( ph  ->  C ( S  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( K  +  L ) )
 
Theoremdvmulxxbr 12835 The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 12837. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  C ( S  _D  F ) K )   &    |-  ( ph  ->  C ( S  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( S  _D  ( F  oF  x.  G ) ) ( ( K  x.  ( G `
  C ) )  +  ( L  x.  ( F `  C ) ) ) )
 
Theoremdvaddxx 12836 The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 12834. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )   =>    |-  ( ph  ->  ( ( S  _D  ( F  oF  +  G ) ) `  C )  =  ( (
 ( S  _D  F ) `  C )  +  ( ( S  _D  G ) `  C ) ) )
 
Theoremdvmulxx 12837 The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 12835. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )   =>    |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) `  C )  =  ( (
 ( ( S  _D  F ) `  C )  x.  ( G `  C ) )  +  ( ( ( S  _D  G ) `  C )  x.  ( F `  C ) ) ) )
 
Theoremdviaddf 12838 The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  X 
 C_  S )   &    |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  dom  ( S  _D  F )  =  X )   &    |-  ( ph  ->  dom  ( S  _D  G )  =  X )   =>    |-  ( ph  ->  ( S  _D  ( F  oF  +  G )
 )  =  ( ( S  _D  F )  oF  +  ( S  _D  G ) ) )
 
Theoremdvimulf 12839 The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  X 
 C_  S )   &    |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  dom  ( S  _D  F )  =  X )   &    |-  ( ph  ->  dom  ( S  _D  G )  =  X )   =>    |-  ( ph  ->  ( S  _D  ( F  oF  x.  G )
 )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  (
 ( S  _D  G )  oF  x.  F ) ) )
 
Theoremdvcoapbr 12840* The chain rule for derivatives at a point. The  u #  C  -> 
( G `  u
) #  ( G `  C ) hypothesis constrains what functions work for  G. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : Y --> X )   &    |-  ( ph  ->  Y  C_  T )   &    |-  ( ph  ->  A. u  e.  Y  ( u #  C  ->  ( G `  u ) #  ( G `  C ) ) )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  T  C_ 
 CC )   &    |-  ( ph  ->  ( G `  C ) ( S  _D  F ) K )   &    |-  ( ph  ->  C ( T  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( T  _D  ( F  o.  G ) ) ( K  x.  L ) )
 
Theoremdvcjbr 12841 The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 12842. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  RR )   &    |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )   =>    |-  ( ph  ->  C ( RR  _D  ( *  o.  F ) ) ( * `  (
 ( RR  _D  F ) `  C ) ) )
 
Theoremdvcj 12842 The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 12841. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( ( F : X
 --> CC  /\  X  C_  RR )  ->  ( RR 
 _D  ( *  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )
 
Theoremdvfre 12843 The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014.)
 |-  ( ( F : A
 --> RR  /\  A  C_  RR )  ->  ( RR 
 _D  F ) : dom  ( RR  _D  F ) --> RR )
 
Theoremdvexp 12844* Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( N  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  ( N  x.  ( x ^
 ( N  -  1
 ) ) ) ) )
 
Theoremdvexp2 12845* Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( N  e.  NN0  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  if ( N  =  0 , 
 0 ,  ( N  x.  ( x ^
 ( N  -  1
 ) ) ) ) ) )
 
Theoremdvrecap 12846* Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
 |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )  =  ( x  e. 
 { w  e.  CC  |  w #  0 }  |->  -u ( A  /  ( x ^ 2 ) ) ) )
 
Theoremdvmptidcn 12847 Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
 |-  ( CC  _D  ( x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 )
 
Theoremdvmptccn 12848* Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( CC  _D  ( x  e. 
 CC  |->  A ) )  =  ( x  e. 
 CC  |->  0 ) )
 
Theoremdvmptclx 12849* Closure lemma for dvmptmulx 12851 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  x  e.  X )  ->  B  e.  V )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   &    |-  ( ph  ->  X 
 C_  S )   =>    |-  ( ( ph  /\  x  e.  X ) 
 ->  B  e.  CC )
 
Theoremdvmptaddx 12850* Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  x  e.  X )  ->  B  e.  V )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   &    |-  ( ph  ->  X 
 C_  S )   &    |-  (
 ( ph  /\  x  e.  X )  ->  C  e.  CC )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  D  e.  W )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  C ) )  =  ( x  e.  X  |->  D ) )   =>    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  ( A  +  C ) ) )  =  ( x  e.  X  |->  ( B  +  D ) ) )
 
Theoremdvmptmulx 12851* Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  x  e.  X )  ->  B  e.  V )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   &    |-  ( ph  ->  X 
 C_  S )   &    |-  (
 ( ph  /\  x  e.  X )  ->  C  e.  CC )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  D  e.  W )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  C ) )  =  ( x  e.  X  |->  D ) )   =>    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  ( A  x.  C ) ) )  =  ( x  e.  X  |->  ( ( B  x.  C )  +  ( D  x.  A ) ) ) )
 
Theoremdvmptcmulcn 12852* Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( CC  _D  ( x  e. 
 CC  |->  ( C  x.  A ) ) )  =  ( x  e. 
 CC  |->  ( C  x.  B ) ) )
 
Theoremdvmptnegcn 12853* Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   =>    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  -u A ) )  =  ( x  e.  CC  |->  -u B ) )
 
Theoremdvmptsubcn 12854* Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   &    |-  (
 ( ph  /\  x  e. 
 CC )  ->  C  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  D  e.  W )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  C ) )  =  ( x  e.  CC  |->  D ) )   =>    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  ( A  -  C ) ) )  =  ( x  e.  CC  |->  ( B  -  D ) ) )
 
Theoremdveflem 12855 Derivative of the exponential function at 0. The key step in the proof is eftlub 11396, to show that  abs ( exp ( x )  - 
1  -  x )  <_  abs ( x ) ^ 2  x.  (
3  /  4 ). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
 |-  0 ( CC  _D  exp ) 1
 
Theoremdvef 12856 Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
 |-  ( CC  _D  exp )  =  exp
 
PART 9  BASIC REAL AND COMPLEX FUNCTIONS
 
9.1  Basic trigonometry
 
9.1.1  The exponential, sine, and cosine functions (cont.)
 
Theoremefcn 12857 The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.)
 |- 
 exp  e.  ( CC -cn-> CC )
 
Theoremsincn 12858 Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
 |- 
 sin  e.  ( CC -cn-> CC )
 
Theoremcoscn 12859 Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
 |- 
 cos  e.  ( CC -cn-> CC )
 
9.1.2  Properties of pi = 3.14159...
 
Theorempilem1 12860 Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro, 9-May-2014.)
 |-  ( A  e.  ( RR+ 
 i^i  ( `' sin " { 0 } )
 ) 
 <->  ( A  e.  RR+  /\  ( sin `  A )  =  0 )
 )
 
Theoremcosz12 12861 Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.)
 |- 
 E. p  e.  (
 1 (,) 2 ) ( cos `  p )  =  0
 
Theoremsin0pilem1 12862* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
 |- 
 E. p  e.  (
 1 (,) 2 ) ( ( cos `  p )  =  0  /\  A. x  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) )
 
Theoremsin0pilem2 12863* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
 |- 
 E. q  e.  (
 2 (,) 4 ) ( ( sin `  q
 )  =  0  /\  A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) )
 
Theorempilem3 12864 Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
 |-  ( pi  e.  (
 2 (,) 4 )  /\  ( sin `  pi )  =  0 )
 
Theorempigt2lt4 12865  pi is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
 |-  ( 2  <  pi  /\  pi  <  4 )
 
Theoremsinpi 12866 The sine of  pi is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( sin `  pi )  =  0
 
Theorempire 12867  pi is a real number. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  pi  e.  RR
 
Theorempicn 12868  pi is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.)
 |-  pi  e.  CC
 
Theorempipos 12869  pi is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
 |-  0  <  pi
 
Theorempirp 12870  pi is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  pi  e.  RR+
 
Theoremnegpicn 12871  -u pi is a real number. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  -u pi  e.  CC
 
Theoremsinhalfpilem 12872 Lemma for sinhalfpi 12877 and coshalfpi 12878. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( ( sin `  ( pi  /  2 ) )  =  1  /\  ( cos `  ( pi  / 
 2 ) )  =  0 )
 
Theoremhalfpire 12873  pi  /  2 is real. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( pi  /  2
 )  e.  RR
 
Theoremneghalfpire 12874  -u pi  / 
2 is real. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  -u ( pi  /  2
 )  e.  RR
 
Theoremneghalfpirx 12875  -u pi  / 
2 is an extended real. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  -u ( pi  /  2
 )  e.  RR*
 
Theorempidiv2halves 12876 Adding  pi  /  2 to itself gives  pi. See 2halves 8949. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( ( pi  / 
 2 )  +  ( pi  /  2 ) )  =  pi
 
Theoremsinhalfpi 12877 The sine of  pi  /  2 is 1. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( sin `  ( pi  /  2 ) )  =  1
 
Theoremcoshalfpi 12878 The cosine of  pi  /  2 is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( cos `  ( pi  /  2 ) )  =  0
 
Theoremcosneghalfpi 12879 The cosine of  -u pi  /  2 is zero. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( cos `  -u ( pi  /  2 ) )  =  0
 
Theoremefhalfpi 12880 The exponential of  _i pi  /  2 is  _i. (Contributed by Mario Carneiro, 9-May-2014.)
 |-  ( exp `  ( _i  x.  ( pi  / 
 2 ) ) )  =  _i
 
Theoremcospi 12881 The cosine of  pi is  -u 1. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( cos `  pi )  =  -u 1
 
Theoremefipi 12882 The exponential of  _i  x.  pi is  -u 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( exp `  ( _i  x.  pi ) )  =  -u 1
 
Theoremeulerid 12883 Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
 |-  ( ( exp `  ( _i  x.  pi ) )  +  1 )  =  0
 
Theoremsin2pi 12884 The sine of  2 pi is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( sin `  (
 2  x.  pi ) )  =  0
 
Theoremcos2pi 12885 The cosine of  2 pi is 1. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( cos `  (
 2  x.  pi ) )  =  1
 
Theoremef2pi 12886 The exponential of  2 pi _i is  1. (Contributed by Mario Carneiro, 9-May-2014.)
 |-  ( exp `  ( _i  x.  ( 2  x.  pi ) ) )  =  1
 
Theoremef2kpi 12887 If  K is an integer, then the exponential of  2 K pi _i is  1. (Contributed by Mario Carneiro, 9-May-2014.)
 |-  ( K  e.  ZZ  ->  ( exp `  (
 ( _i  x.  (
 2  x.  pi ) )  x.  K ) )  =  1 )
 
Theoremefper 12888 The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.)
 |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( exp `  ( A  +  ( ( _i  x.  ( 2  x.  pi ) )  x.  K ) ) )  =  ( exp `  A ) )
 
Theoremsinperlem 12889 Lemma for sinper 12890 and cosper 12891. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( A  e.  CC  ->  ( F `  A )  =  ( (
 ( exp `  ( _i  x.  A ) ) O ( exp `  ( -u _i  x.  A ) ) )  /  D ) )   &    |-  ( ( A  +  ( K  x.  ( 2  x.  pi ) ) )  e. 
 CC  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( ( ( exp `  ( _i  x.  ( A  +  ( K  x.  (
 2  x.  pi ) ) ) ) ) O ( exp `  ( -u _i  x.  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) ) ) )  /  D ) )   =>    |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( F `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( F `
  A ) )
 
Theoremsinper 12890 The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( sin `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( sin `  A ) )
 
Theoremcosper 12891 The cosine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( cos `  ( A  +  ( K  x.  ( 2  x.  pi ) ) ) )  =  ( cos `  A ) )
 
Theoremsin2kpi 12892 If  K is an integer, then the sine of  2 K pi is 0. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( K  e.  ZZ  ->  ( sin `  ( K  x.  ( 2  x.  pi ) ) )  =  0 )
 
Theoremcos2kpi 12893 If  K is an integer, then the cosine of  2 K pi is 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.)
 |-  ( K  e.  ZZ  ->  ( cos `  ( K  x.  ( 2  x.  pi ) ) )  =  1 )
 
Theoremsin2pim 12894 Sine of a number subtracted from  2  x.  pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( sin `  (
 ( 2  x.  pi )  -  A ) )  =  -u ( sin `  A ) )
 
Theoremcos2pim 12895 Cosine of a number subtracted from  2  x.  pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( cos `  (
 ( 2  x.  pi )  -  A ) )  =  ( cos `  A ) )
 
Theoremsinmpi 12896 Sine of a number less  pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( sin `  ( A  -  pi ) )  =  -u ( sin `  A ) )
 
Theoremcosmpi 12897 Cosine of a number less  pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( cos `  ( A  -  pi ) )  =  -u ( cos `  A ) )
 
Theoremsinppi 12898 Sine of a number plus  pi. (Contributed by NM, 10-Aug-2008.)
 |-  ( A  e.  CC  ->  ( sin `  ( A  +  pi )
 )  =  -u ( sin `  A ) )
 
Theoremcosppi 12899 Cosine of a number plus  pi. (Contributed by NM, 18-Aug-2008.)
 |-  ( A  e.  CC  ->  ( cos `  ( A  +  pi )
 )  =  -u ( cos `  A ) )
 
Theoremefimpi 12900 The exponential function at  _i times a real number less 
pi. (Contributed by Paul Chapman, 15-Mar-2008.)
 |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  ( A  -  pi ) ) )  =  -u ( exp `  ( _i  x.  A ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >