ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismndd Unicode version

Theorem ismndd 13384
Description: Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ismndd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
ismndd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
ismndd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
ismndd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
ismndd.z  |-  ( ph  ->  .0.  e.  B )
ismndd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
ismndd.j  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
Assertion
Ref Expression
ismndd  |-  ( ph  ->  G  e.  Mnd )
Distinct variable groups:    x, y, z, B    x, G, y, z    ph, x, y, z   
x,  .0.
Allowed substitution hints:    .+ ( x, y,
z)    .0. ( y, z)

Proof of Theorem ismndd
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 ismndd.c . . . . . 6  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
213expb 1207 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  .+  y
)  e.  B )
3 simpll 527 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  B )  ->  ph )
4 simplrl 535 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  B )  ->  x  e.  B )
5 simplrr 536 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  B )  ->  y  e.  B )
6 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  B )  ->  z  e.  B )
7 ismndd.a . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
83, 4, 5, 6, 7syl13anc 1252 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  B )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
98ralrimiva 2581 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
102, 9jca 306 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) ) )
1110ralrimivva 2590 . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) ) )
12 ismndd.b . . . 4  |-  ( ph  ->  B  =  ( Base `  G ) )
13 ismndd.p . . . . . . . 8  |-  ( ph  ->  .+  =  ( +g  `  G ) )
1413oveqd 5984 . . . . . . 7  |-  ( ph  ->  ( x  .+  y
)  =  ( x ( +g  `  G
) y ) )
1514, 12eleq12d 2278 . . . . . 6  |-  ( ph  ->  ( ( x  .+  y )  e.  B  <->  ( x ( +g  `  G
) y )  e.  ( Base `  G
) ) )
16 eqidd 2208 . . . . . . . . 9  |-  ( ph  ->  z  =  z )
1713, 14, 16oveq123d 5988 . . . . . . . 8  |-  ( ph  ->  ( ( x  .+  y )  .+  z
)  =  ( ( x ( +g  `  G
) y ) ( +g  `  G ) z ) )
18 eqidd 2208 . . . . . . . . 9  |-  ( ph  ->  x  =  x )
1913oveqd 5984 . . . . . . . . 9  |-  ( ph  ->  ( y  .+  z
)  =  ( y ( +g  `  G
) z ) )
2013, 18, 19oveq123d 5988 . . . . . . . 8  |-  ( ph  ->  ( x  .+  (
y  .+  z )
)  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) )
2117, 20eqeq12d 2222 . . . . . . 7  |-  ( ph  ->  ( ( ( x 
.+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  <-> 
( ( x ( +g  `  G ) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G ) z ) ) ) )
2212, 21raleqbidv 2721 . . . . . 6  |-  ( ph  ->  ( A. z  e.  B  ( ( x 
.+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  <->  A. z  e.  ( Base `  G ) ( ( x ( +g  `  G ) y ) ( +g  `  G
) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G
) z ) ) ) )
2315, 22anbi12d 473 . . . . 5  |-  ( ph  ->  ( ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )  <->  ( ( x ( +g  `  G
) y )  e.  ( Base `  G
)  /\  A. z  e.  ( Base `  G
) ( ( x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) ) ) )
2412, 23raleqbidv 2721 . . . 4  |-  ( ph  ->  ( A. y  e.  B  ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )  <->  A. y  e.  (
Base `  G )
( ( x ( +g  `  G ) y )  e.  (
Base `  G )  /\  A. z  e.  (
Base `  G )
( ( x ( +g  `  G ) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G ) z ) ) ) ) )
2512, 24raleqbidv 2721 . . 3  |-  ( ph  ->  ( A. x  e.  B  A. y  e.  B  ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )  <->  A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( ( x ( +g  `  G ) y )  e.  ( Base `  G
)  /\  A. z  e.  ( Base `  G
) ( ( x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) ) ) )
2611, 25mpbid 147 . 2  |-  ( ph  ->  A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( ( x ( +g  `  G ) y )  e.  ( Base `  G
)  /\  A. z  e.  ( Base `  G
) ( ( x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) ) )
27 ismndd.z . . . 4  |-  ( ph  ->  .0.  e.  B )
2827, 12eleqtrd 2286 . . 3  |-  ( ph  ->  .0.  e.  ( Base `  G ) )
2912eleq2d 2277 . . . . . 6  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  G
) ) )
3029biimpar 297 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  x  e.  B )
3113adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  .+  =  ( +g  `  G ) )
3231oveqd 5984 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  (  .0.  ( +g  `  G ) x ) )
33 ismndd.i . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
3432, 33eqtr3d 2242 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  ( +g  `  G
) x )  =  x )
3531oveqd 5984 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  ( x ( +g  `  G )  .0.  ) )
36 ismndd.j . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
3735, 36eqtr3d 2242 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (
x ( +g  `  G
)  .0.  )  =  x )
3834, 37jca 306 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .0.  ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
)  .0.  )  =  x ) )
3930, 38syldan 282 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  ( (  .0.  ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
)  .0.  )  =  x ) )
4039ralrimiva 2581 . . 3  |-  ( ph  ->  A. x  e.  (
Base `  G )
( (  .0.  ( +g  `  G ) x )  =  x  /\  ( x ( +g  `  G )  .0.  )  =  x ) )
41 oveq1 5974 . . . . . 6  |-  ( u  =  .0.  ->  (
u ( +g  `  G
) x )  =  (  .0.  ( +g  `  G ) x ) )
4241eqeq1d 2216 . . . . 5  |-  ( u  =  .0.  ->  (
( u ( +g  `  G ) x )  =  x  <->  (  .0.  ( +g  `  G ) x )  =  x ) )
4342ovanraleqv 5991 . . . 4  |-  ( u  =  .0.  ->  ( A. x  e.  ( Base `  G ) ( ( u ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) u )  =  x )  <->  A. x  e.  ( Base `  G
) ( (  .0.  ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
)  .0.  )  =  x ) ) )
4443rspcev 2884 . . 3  |-  ( (  .0.  e.  ( Base `  G )  /\  A. x  e.  ( Base `  G ) ( (  .0.  ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
)  .0.  )  =  x ) )  ->  E. u  e.  ( Base `  G ) A. x  e.  ( Base `  G ) ( ( u ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) u )  =  x ) )
4528, 40, 44syl2anc 411 . 2  |-  ( ph  ->  E. u  e.  (
Base `  G ) A. x  e.  ( Base `  G ) ( ( u ( +g  `  G ) x )  =  x  /\  (
x ( +g  `  G
) u )  =  x ) )
46 eqid 2207 . . 3  |-  ( Base `  G )  =  (
Base `  G )
47 eqid 2207 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
4846, 47ismnd 13366 . 2  |-  ( G  e.  Mnd  <->  ( A. x  e.  ( Base `  G ) A. y  e.  ( Base `  G
) ( ( x ( +g  `  G
) y )  e.  ( Base `  G
)  /\  A. z  e.  ( Base `  G
) ( ( x ( +g  `  G
) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G
) ( y ( +g  `  G ) z ) ) )  /\  E. u  e.  ( Base `  G
) A. x  e.  ( Base `  G
) ( ( u ( +g  `  G
) x )  =  x  /\  ( x ( +g  `  G
) u )  =  x ) ) )
4926, 45, 48sylanbrc 417 1  |-  ( ph  ->  G  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   Mndcmnd 13363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-mgm 13303  df-sgrp 13349  df-mnd 13364
This theorem is referenced by:  issubmnd  13389  prdsmndd  13395  imasmnd2  13399  isgrpde  13469  isringd  13918  iscrngd  13919
  Copyright terms: Public domain W3C validator