Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismndd | Unicode version |
Description: Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ismndd.b | |
ismndd.p | |
ismndd.c | |
ismndd.a | |
ismndd.z | |
ismndd.i | |
ismndd.j |
Ref | Expression |
---|---|
ismndd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismndd.c | . . . . . 6 | |
2 | 1 | 3expb 1204 | . . . . 5 |
3 | simpll 527 | . . . . . . 7 | |
4 | simplrl 535 | . . . . . . 7 | |
5 | simplrr 536 | . . . . . . 7 | |
6 | simpr 110 | . . . . . . 7 | |
7 | ismndd.a | . . . . . . 7 | |
8 | 3, 4, 5, 6, 7 | syl13anc 1240 | . . . . . 6 |
9 | 8 | ralrimiva 2548 | . . . . 5 |
10 | 2, 9 | jca 306 | . . . 4 |
11 | 10 | ralrimivva 2557 | . . 3 |
12 | ismndd.b | . . . 4 | |
13 | ismndd.p | . . . . . . . 8 | |
14 | 13 | oveqd 5882 | . . . . . . 7 |
15 | 14, 12 | eleq12d 2246 | . . . . . 6 |
16 | eqidd 2176 | . . . . . . . . 9 | |
17 | 13, 14, 16 | oveq123d 5886 | . . . . . . . 8 |
18 | eqidd 2176 | . . . . . . . . 9 | |
19 | 13 | oveqd 5882 | . . . . . . . . 9 |
20 | 13, 18, 19 | oveq123d 5886 | . . . . . . . 8 |
21 | 17, 20 | eqeq12d 2190 | . . . . . . 7 |
22 | 12, 21 | raleqbidv 2682 | . . . . . 6 |
23 | 15, 22 | anbi12d 473 | . . . . 5 |
24 | 12, 23 | raleqbidv 2682 | . . . 4 |
25 | 12, 24 | raleqbidv 2682 | . . 3 |
26 | 11, 25 | mpbid 147 | . 2 |
27 | ismndd.z | . . . 4 | |
28 | 27, 12 | eleqtrd 2254 | . . 3 |
29 | 12 | eleq2d 2245 | . . . . . 6 |
30 | 29 | biimpar 297 | . . . . 5 |
31 | 13 | adantr 276 | . . . . . . . 8 |
32 | 31 | oveqd 5882 | . . . . . . 7 |
33 | ismndd.i | . . . . . . 7 | |
34 | 32, 33 | eqtr3d 2210 | . . . . . 6 |
35 | 31 | oveqd 5882 | . . . . . . 7 |
36 | ismndd.j | . . . . . . 7 | |
37 | 35, 36 | eqtr3d 2210 | . . . . . 6 |
38 | 34, 37 | jca 306 | . . . . 5 |
39 | 30, 38 | syldan 282 | . . . 4 |
40 | 39 | ralrimiva 2548 | . . 3 |
41 | oveq1 5872 | . . . . . 6 | |
42 | 41 | eqeq1d 2184 | . . . . 5 |
43 | 42 | ovanraleqv 5889 | . . . 4 |
44 | 43 | rspcev 2839 | . . 3 |
45 | 28, 40, 44 | syl2anc 411 | . 2 |
46 | eqid 2175 | . . 3 | |
47 | eqid 2175 | . . 3 | |
48 | 46, 47 | ismnd 12684 | . 2 |
49 | 26, 45, 48 | sylanbrc 417 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 wceq 1353 wcel 2146 wral 2453 wrex 2454 cfv 5208 (class class class)co 5865 cbs 12427 cplusg 12491 cmnd 12681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-inn 8891 df-2 8949 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-mgm 12639 df-sgrp 12672 df-mnd 12682 |
This theorem is referenced by: isgrpde 12758 isringd 13012 iscrngd 13013 |
Copyright terms: Public domain | W3C validator |