Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismndd | Unicode version |
Description: Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ismndd.b | |
ismndd.p | |
ismndd.c | |
ismndd.a | |
ismndd.z | |
ismndd.i | |
ismndd.j |
Ref | Expression |
---|---|
ismndd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismndd.c | . . . . . 6 | |
2 | 1 | 3expb 1199 | . . . . 5 |
3 | simpll 524 | . . . . . . 7 | |
4 | simplrl 530 | . . . . . . 7 | |
5 | simplrr 531 | . . . . . . 7 | |
6 | simpr 109 | . . . . . . 7 | |
7 | ismndd.a | . . . . . . 7 | |
8 | 3, 4, 5, 6, 7 | syl13anc 1235 | . . . . . 6 |
9 | 8 | ralrimiva 2543 | . . . . 5 |
10 | 2, 9 | jca 304 | . . . 4 |
11 | 10 | ralrimivva 2552 | . . 3 |
12 | ismndd.b | . . . 4 | |
13 | ismndd.p | . . . . . . . 8 | |
14 | 13 | oveqd 5870 | . . . . . . 7 |
15 | 14, 12 | eleq12d 2241 | . . . . . 6 |
16 | eqidd 2171 | . . . . . . . . 9 | |
17 | 13, 14, 16 | oveq123d 5874 | . . . . . . . 8 |
18 | eqidd 2171 | . . . . . . . . 9 | |
19 | 13 | oveqd 5870 | . . . . . . . . 9 |
20 | 13, 18, 19 | oveq123d 5874 | . . . . . . . 8 |
21 | 17, 20 | eqeq12d 2185 | . . . . . . 7 |
22 | 12, 21 | raleqbidv 2677 | . . . . . 6 |
23 | 15, 22 | anbi12d 470 | . . . . 5 |
24 | 12, 23 | raleqbidv 2677 | . . . 4 |
25 | 12, 24 | raleqbidv 2677 | . . 3 |
26 | 11, 25 | mpbid 146 | . 2 |
27 | ismndd.z | . . . 4 | |
28 | 27, 12 | eleqtrd 2249 | . . 3 |
29 | 12 | eleq2d 2240 | . . . . . 6 |
30 | 29 | biimpar 295 | . . . . 5 |
31 | 13 | adantr 274 | . . . . . . . 8 |
32 | 31 | oveqd 5870 | . . . . . . 7 |
33 | ismndd.i | . . . . . . 7 | |
34 | 32, 33 | eqtr3d 2205 | . . . . . 6 |
35 | 31 | oveqd 5870 | . . . . . . 7 |
36 | ismndd.j | . . . . . . 7 | |
37 | 35, 36 | eqtr3d 2205 | . . . . . 6 |
38 | 34, 37 | jca 304 | . . . . 5 |
39 | 30, 38 | syldan 280 | . . . 4 |
40 | 39 | ralrimiva 2543 | . . 3 |
41 | oveq1 5860 | . . . . . 6 | |
42 | 41 | eqeq1d 2179 | . . . . 5 |
43 | 42 | ovanraleqv 5877 | . . . 4 |
44 | 43 | rspcev 2834 | . . 3 |
45 | 28, 40, 44 | syl2anc 409 | . 2 |
46 | eqid 2170 | . . 3 | |
47 | eqid 2170 | . . 3 | |
48 | 46, 47 | ismnd 12655 | . 2 |
49 | 26, 45, 48 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 cmnd 12652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-mgm 12610 df-sgrp 12643 df-mnd 12653 |
This theorem is referenced by: isgrpde 12728 |
Copyright terms: Public domain | W3C validator |