ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isopo Unicode version

Theorem isopo 5947
Description: An isomorphism preserves partial ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
isopo  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  Po  A 
<->  S  Po  B ) )

Proof of Theorem isopo
StepHypRef Expression
1 isocnv 5935 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
2 isopolem 5946 . . 3  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  ( R  Po  A  ->  S  Po  B ) )
31, 2syl 14 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  Po  A  ->  S  Po  B
) )
4 isopolem 5946 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Po  B  ->  R  Po  A
) )
53, 4impbid 129 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  Po  A 
<->  S  Po  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    Po wpo 4385   `'ccnv 4718    Isom wiso 5319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator