ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoresbr Unicode version

Theorem isoresbr 5880
Description: A consequence of isomorphism on two relations for a function's restriction. (Contributed by Jim Kingdon, 11-Jan-2019.)
Assertion
Ref Expression
isoresbr  |-  ( ( F  |`  A )  Isom  R ,  S  ( A ,  ( F
" A ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( F `  x ) S ( F `  y ) ) )
Distinct variable groups:    x, y, A   
x, F, y    x, R, y    x, S, y

Proof of Theorem isoresbr
StepHypRef Expression
1 isorel 5879 . . . 4  |-  ( ( ( F  |`  A ) 
Isom  R ,  S  ( A ,  ( F
" A ) )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x R y  <-> 
( ( F  |`  A ) `  x
) S ( ( F  |`  A ) `  y ) ) )
2 fvres 5602 . . . . . 6  |-  ( x  e.  A  ->  (
( F  |`  A ) `
 x )  =  ( F `  x
) )
3 fvres 5602 . . . . . 6  |-  ( y  e.  A  ->  (
( F  |`  A ) `
 y )  =  ( F `  y
) )
42, 3breqan12d 4061 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( ( F  |`  A ) `  x
) S ( ( F  |`  A ) `  y )  <->  ( F `  x ) S ( F `  y ) ) )
54adantl 277 . . . 4  |-  ( ( ( F  |`  A ) 
Isom  R ,  S  ( A ,  ( F
" A ) )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( ( F  |`  A ) `  x
) S ( ( F  |`  A ) `  y )  <->  ( F `  x ) S ( F `  y ) ) )
61, 5bitrd 188 . . 3  |-  ( ( ( F  |`  A ) 
Isom  R ,  S  ( A ,  ( F
" A ) )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x R y  <-> 
( F `  x
) S ( F `
 y ) ) )
76biimpd 144 . 2  |-  ( ( ( F  |`  A ) 
Isom  R ,  S  ( A ,  ( F
" A ) )  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( x R y  ->  ( F `  x ) S ( F `  y ) ) )
87ralrimivva 2588 1  |-  ( ( F  |`  A )  Isom  R ,  S  ( A ,  ( F
" A ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  ->  ( F `  x ) S ( F `  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2176   A.wral 2484   class class class wbr 4045    |` cres 4678   "cima 4679   ` cfv 5272    Isom wiso 5273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-res 4688  df-iota 5233  df-fv 5280  df-isom 5281
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator