| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvres | Unicode version | ||
| Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fvres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 |
. . . . 5
| |
| 2 | 1 | brres 4984 |
. . . 4
|
| 3 | 2 | rbaib 923 |
. . 3
|
| 4 | 3 | iotabidv 5273 |
. 2
|
| 5 | df-fv 5298 |
. 2
| |
| 6 | df-fv 5298 |
. 2
| |
| 7 | 4, 5, 6 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-res 4705 df-iota 5251 df-fv 5298 |
| This theorem is referenced by: fvresd 5624 funssfv 5625 feqresmpt 5656 fvreseq 5706 respreima 5731 ffvresb 5766 fnressn 5793 fressnfv 5794 fvresi 5800 fvunsng 5801 fvsnun1 5804 fvsnun2 5805 fsnunfv 5808 funfvima 5839 isoresbr 5901 isores3 5907 isoini2 5911 ovres 6109 ofres 6196 offres 6243 fo1stresm 6270 fo2ndresm 6271 fo2ndf 6336 f1o2ndf1 6337 smores 6401 smores2 6403 tfrlem1 6417 rdgival 6491 frec0g 6506 freccllem 6511 frecsuclem 6515 frecrdg 6517 resixp 6843 djulclr 7177 djurclr 7178 djur 7197 updjudhcoinlf 7208 updjudhcoinrg 7209 updjud 7210 finomni 7268 exmidfodomrlemrALT 7342 addpiord 7464 mulpiord 7465 suplocexprlemell 7861 fseq1p1m1 10251 seq3feq2 10658 seqf1oglem2 10702 seq3coll 11024 pfxccat1 11193 shftidt 11259 climres 11729 fisumss 11818 isumclim3 11849 fsum2dlemstep 11860 fprodssdc 12016 fprod2dlemstep 12048 reeff1 12126 eucalgcvga 12495 eucalg 12496 strslfv2d 12990 setsslid 12998 setsslnid 12999 resmhm 13434 resghm 13711 rngmgpf 13814 mgpf 13888 znf1o 14528 cnptopresti 14825 cnptoprest 14826 lmres 14835 tx1cn 14856 tx2cn 14857 cnmpt1st 14875 cnmpt2nd 14876 remetdval 15134 rescncf 15168 limcdifap 15249 limcresi 15253 plyreres 15351 reeff1o 15360 reefiso 15364 ioocosf1o 15441 relogcl 15449 relogef 15451 logltb 15461 mpodvdsmulf1o 15577 fsumdvdsmul 15578 djucllem 15936 012of 16130 2o01f 16131 |
| Copyright terms: Public domain | W3C validator |