| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvres | Unicode version | ||
| Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fvres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 |
. . . . 5
| |
| 2 | 1 | brres 4965 |
. . . 4
|
| 3 | 2 | rbaib 923 |
. . 3
|
| 4 | 3 | iotabidv 5254 |
. 2
|
| 5 | df-fv 5279 |
. 2
| |
| 6 | df-fv 5279 |
. 2
| |
| 7 | 4, 5, 6 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-res 4687 df-iota 5232 df-fv 5279 |
| This theorem is referenced by: fvresd 5601 funssfv 5602 feqresmpt 5633 fvreseq 5683 respreima 5708 ffvresb 5743 fnressn 5770 fressnfv 5771 fvresi 5777 fvunsng 5778 fvsnun1 5781 fvsnun2 5782 fsnunfv 5785 funfvima 5816 isoresbr 5878 isores3 5884 isoini2 5888 ovres 6086 ofres 6173 offres 6220 fo1stresm 6247 fo2ndresm 6248 fo2ndf 6313 f1o2ndf1 6314 smores 6378 smores2 6380 tfrlem1 6394 rdgival 6468 frec0g 6483 freccllem 6488 frecsuclem 6492 frecrdg 6494 resixp 6820 djulclr 7151 djurclr 7152 djur 7171 updjudhcoinlf 7182 updjudhcoinrg 7183 updjud 7184 finomni 7242 exmidfodomrlemrALT 7311 addpiord 7429 mulpiord 7430 suplocexprlemell 7826 fseq1p1m1 10216 seq3feq2 10621 seqf1oglem2 10665 seq3coll 10987 shftidt 11144 climres 11614 fisumss 11703 isumclim3 11734 fsum2dlemstep 11745 fprodssdc 11901 fprod2dlemstep 11933 reeff1 12011 eucalgcvga 12380 eucalg 12381 strslfv2d 12875 setsslid 12883 setsslnid 12884 resmhm 13319 resghm 13596 rngmgpf 13699 mgpf 13773 znf1o 14413 cnptopresti 14710 cnptoprest 14711 lmres 14720 tx1cn 14741 tx2cn 14742 cnmpt1st 14760 cnmpt2nd 14761 remetdval 15019 rescncf 15053 limcdifap 15134 limcresi 15138 plyreres 15236 reeff1o 15245 reefiso 15249 ioocosf1o 15326 relogcl 15334 relogef 15336 logltb 15346 mpodvdsmulf1o 15462 fsumdvdsmul 15463 djucllem 15736 012of 15930 2o01f 15931 |
| Copyright terms: Public domain | W3C validator |