![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvres | Unicode version |
Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fvres |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | 1 | brres 4948 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | rbaib 922 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | iotabidv 5237 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | df-fv 5262 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | df-fv 5262 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | 3eqtr4g 2251 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-res 4671 df-iota 5215 df-fv 5262 |
This theorem is referenced by: fvresd 5579 funssfv 5580 feqresmpt 5611 fvreseq 5661 respreima 5686 ffvresb 5721 fnressn 5744 fressnfv 5745 fvresi 5751 fvunsng 5752 fvsnun1 5755 fvsnun2 5756 fsnunfv 5759 funfvima 5790 isoresbr 5852 isores3 5858 isoini2 5862 ovres 6058 ofres 6145 offres 6187 fo1stresm 6214 fo2ndresm 6215 fo2ndf 6280 f1o2ndf1 6281 smores 6345 smores2 6347 tfrlem1 6361 rdgival 6435 frec0g 6450 freccllem 6455 frecsuclem 6459 frecrdg 6461 resixp 6787 djulclr 7108 djurclr 7109 djur 7128 updjudhcoinlf 7139 updjudhcoinrg 7140 updjud 7141 finomni 7199 exmidfodomrlemrALT 7263 addpiord 7376 mulpiord 7377 suplocexprlemell 7773 fseq1p1m1 10160 seq3feq2 10547 seqf1oglem2 10591 seq3coll 10913 shftidt 10977 climres 11446 fisumss 11535 isumclim3 11566 fsum2dlemstep 11577 fprodssdc 11733 fprod2dlemstep 11765 reeff1 11843 eucalgcvga 12196 eucalg 12197 strslfv2d 12661 setsslid 12669 setsslnid 12670 resmhm 13059 resghm 13330 rngmgpf 13433 mgpf 13507 znf1o 14139 cnptopresti 14406 cnptoprest 14407 lmres 14416 tx1cn 14437 tx2cn 14438 cnmpt1st 14456 cnmpt2nd 14457 remetdval 14707 rescncf 14736 limcdifap 14816 limcresi 14820 reeff1o 14908 reefiso 14912 ioocosf1o 14989 relogcl 14997 relogef 14999 logltb 15009 djucllem 15292 012of 15486 2o01f 15487 |
Copyright terms: Public domain | W3C validator |