| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvres | Unicode version | ||
| Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fvres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 |
. . . . 5
| |
| 2 | 1 | brres 5011 |
. . . 4
|
| 3 | 2 | rbaib 926 |
. . 3
|
| 4 | 3 | iotabidv 5301 |
. 2
|
| 5 | df-fv 5326 |
. 2
| |
| 6 | df-fv 5326 |
. 2
| |
| 7 | 4, 5, 6 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-res 4731 df-iota 5278 df-fv 5326 |
| This theorem is referenced by: fvresd 5652 funssfv 5653 feqresmpt 5688 fvreseq 5738 respreima 5763 ffvresb 5798 fnressn 5825 fressnfv 5826 fvresi 5832 fvunsng 5833 fvsnun1 5836 fvsnun2 5837 fsnunfv 5840 funfvima 5871 isoresbr 5933 isores3 5939 isoini2 5943 ovres 6145 ofres 6233 offres 6280 fo1stresm 6307 fo2ndresm 6308 fo2ndf 6373 f1o2ndf1 6374 smores 6438 smores2 6440 tfrlem1 6454 rdgival 6528 frec0g 6543 freccllem 6548 frecsuclem 6552 frecrdg 6554 resixp 6880 djulclr 7216 djurclr 7217 djur 7236 updjudhcoinlf 7247 updjudhcoinrg 7248 updjud 7249 finomni 7307 exmidfodomrlemrALT 7381 addpiord 7503 mulpiord 7504 suplocexprlemell 7900 fseq1p1m1 10290 seq3feq2 10698 seqf1oglem2 10742 seq3coll 11064 pfxccat1 11234 shftidt 11344 climres 11814 fisumss 11903 isumclim3 11934 fsum2dlemstep 11945 fprodssdc 12101 fprod2dlemstep 12133 reeff1 12211 eucalgcvga 12580 eucalg 12581 strslfv2d 13075 setsslid 13083 setsslnid 13084 resmhm 13520 resghm 13797 rngmgpf 13900 mgpf 13974 znf1o 14615 cnptopresti 14912 cnptoprest 14913 lmres 14922 tx1cn 14943 tx2cn 14944 cnmpt1st 14962 cnmpt2nd 14963 remetdval 15221 rescncf 15255 limcdifap 15336 limcresi 15340 plyreres 15438 reeff1o 15447 reefiso 15451 ioocosf1o 15528 relogcl 15536 relogef 15538 logltb 15548 mpodvdsmulf1o 15664 fsumdvdsmul 15665 djucllem 16164 012of 16357 2o01f 16358 |
| Copyright terms: Public domain | W3C validator |