Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvres | Unicode version |
Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fvres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2715 | . . . . 5 | |
2 | 1 | brres 4874 | . . . 4 |
3 | 2 | rbaib 907 | . . 3 |
4 | 3 | iotabidv 5158 | . 2 |
5 | df-fv 5180 | . 2 | |
6 | df-fv 5180 | . 2 | |
7 | 4, 5, 6 | 3eqtr4g 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wcel 2128 class class class wbr 3967 cres 4590 cio 5135 cfv 5172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4084 ax-pow 4137 ax-pr 4171 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-br 3968 df-opab 4028 df-xp 4594 df-res 4600 df-iota 5137 df-fv 5180 |
This theorem is referenced by: fvresd 5495 funssfv 5496 feqresmpt 5524 fvreseq 5573 respreima 5597 ffvresb 5632 fnressn 5655 fressnfv 5656 fvresi 5662 fvunsng 5663 fvsnun1 5666 fvsnun2 5667 fsnunfv 5670 funfvima 5700 isoresbr 5761 isores3 5767 isoini2 5771 ovres 5962 ofres 6048 offres 6085 fo1stresm 6111 fo2ndresm 6112 fo2ndf 6176 f1o2ndf1 6177 smores 6241 smores2 6243 tfrlem1 6257 rdgival 6331 frec0g 6346 freccllem 6351 frecsuclem 6355 frecrdg 6357 resixp 6680 djulclr 6995 djurclr 6996 djur 7015 updjudhcoinlf 7026 updjudhcoinrg 7027 updjud 7028 finomni 7085 exmidfodomrlemrALT 7140 addpiord 7238 mulpiord 7239 suplocexprlemell 7635 fseq1p1m1 10002 seq3feq2 10378 seq3coll 10724 shftidt 10744 climres 11211 fisumss 11300 isumclim3 11331 fsum2dlemstep 11342 fprodssdc 11498 fprod2dlemstep 11530 reeff1 11608 eucalgcvga 11950 eucalg 11951 strslfv2d 12302 setsslid 12310 setsslnid 12311 cnptopresti 12708 cnptoprest 12709 lmres 12718 tx1cn 12739 tx2cn 12740 cnmpt1st 12758 cnmpt2nd 12759 remetdval 13009 rescncf 13038 limcdifap 13101 limcresi 13105 reeff1o 13164 reefiso 13168 ioocosf1o 13245 relogcl 13253 relogef 13255 logltb 13265 djucllem 13445 012of 13638 2o01f 13639 |
Copyright terms: Public domain | W3C validator |