| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvres | Unicode version | ||
| Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fvres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 |
. . . . 5
| |
| 2 | 1 | brres 4966 |
. . . 4
|
| 3 | 2 | rbaib 923 |
. . 3
|
| 4 | 3 | iotabidv 5255 |
. 2
|
| 5 | df-fv 5280 |
. 2
| |
| 6 | df-fv 5280 |
. 2
| |
| 7 | 4, 5, 6 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-res 4688 df-iota 5233 df-fv 5280 |
| This theorem is referenced by: fvresd 5603 funssfv 5604 feqresmpt 5635 fvreseq 5685 respreima 5710 ffvresb 5745 fnressn 5772 fressnfv 5773 fvresi 5779 fvunsng 5780 fvsnun1 5783 fvsnun2 5784 fsnunfv 5787 funfvima 5818 isoresbr 5880 isores3 5886 isoini2 5890 ovres 6088 ofres 6175 offres 6222 fo1stresm 6249 fo2ndresm 6250 fo2ndf 6315 f1o2ndf1 6316 smores 6380 smores2 6382 tfrlem1 6396 rdgival 6470 frec0g 6485 freccllem 6490 frecsuclem 6494 frecrdg 6496 resixp 6822 djulclr 7153 djurclr 7154 djur 7173 updjudhcoinlf 7184 updjudhcoinrg 7185 updjud 7186 finomni 7244 exmidfodomrlemrALT 7313 addpiord 7431 mulpiord 7432 suplocexprlemell 7828 fseq1p1m1 10218 seq3feq2 10623 seqf1oglem2 10667 seq3coll 10989 pfxccat1 11156 shftidt 11177 climres 11647 fisumss 11736 isumclim3 11767 fsum2dlemstep 11778 fprodssdc 11934 fprod2dlemstep 11966 reeff1 12044 eucalgcvga 12413 eucalg 12414 strslfv2d 12908 setsslid 12916 setsslnid 12917 resmhm 13352 resghm 13629 rngmgpf 13732 mgpf 13806 znf1o 14446 cnptopresti 14743 cnptoprest 14744 lmres 14753 tx1cn 14774 tx2cn 14775 cnmpt1st 14793 cnmpt2nd 14794 remetdval 15052 rescncf 15086 limcdifap 15167 limcresi 15171 plyreres 15269 reeff1o 15278 reefiso 15282 ioocosf1o 15359 relogcl 15367 relogef 15369 logltb 15379 mpodvdsmulf1o 15495 fsumdvdsmul 15496 djucllem 15773 012of 15967 2o01f 15968 |
| Copyright terms: Public domain | W3C validator |