![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvres | Unicode version |
Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fvres |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2658 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | 1 | brres 4781 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | rbaib 887 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | iotabidv 5065 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | df-fv 5087 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | df-fv 5087 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | 3eqtr4g 2170 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-xp 4503 df-res 4509 df-iota 5044 df-fv 5087 |
This theorem is referenced by: fvresd 5398 funssfv 5399 feqresmpt 5427 fvreseq 5476 respreima 5500 ffvresb 5535 fnressn 5558 fressnfv 5559 fvresi 5565 fvunsng 5566 fvsnun1 5569 fvsnun2 5570 fsnunfv 5573 funfvima 5601 isoresbr 5662 isores3 5668 isoini2 5672 ovres 5862 ofres 5948 offres 5985 fo1stresm 6011 fo2ndresm 6012 fo2ndf 6076 f1o2ndf1 6077 smores 6141 smores2 6143 tfrlem1 6157 rdgival 6231 frec0g 6246 freccllem 6251 frecsuclem 6255 frecrdg 6257 resixp 6579 djulclr 6884 djurclr 6885 djur 6904 updjudhcoinlf 6915 updjudhcoinrg 6916 updjud 6917 finomni 6960 exmidfodomrlemrALT 7004 addpiord 7066 mulpiord 7067 fseq1p1m1 9761 seq3feq2 10130 seq3coll 10472 shftidt 10492 climres 10958 fisumss 11047 isumclim3 11078 fsum2dlemstep 11089 reeff1 11252 eucalgcvga 11579 eucalg 11580 strslfv2d 11838 setsslid 11846 setsslnid 11847 cnptopresti 12243 cnptoprest 12244 lmres 12253 tx1cn 12274 tx2cn 12275 cnmpt1st 12293 cnmpt2nd 12294 remetdval 12519 rescncf 12548 limcdifap 12581 limcresi 12585 djucllem 12690 isomninnlem 12906 |
Copyright terms: Public domain | W3C validator |