| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvres | Unicode version | ||
| Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fvres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. . . . 5
| |
| 2 | 1 | brres 4953 |
. . . 4
|
| 3 | 2 | rbaib 922 |
. . 3
|
| 4 | 3 | iotabidv 5242 |
. 2
|
| 5 | df-fv 5267 |
. 2
| |
| 6 | df-fv 5267 |
. 2
| |
| 7 | 4, 5, 6 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-res 4676 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: fvresd 5586 funssfv 5587 feqresmpt 5618 fvreseq 5668 respreima 5693 ffvresb 5728 fnressn 5751 fressnfv 5752 fvresi 5758 fvunsng 5759 fvsnun1 5762 fvsnun2 5763 fsnunfv 5766 funfvima 5797 isoresbr 5859 isores3 5865 isoini2 5869 ovres 6067 ofres 6154 offres 6201 fo1stresm 6228 fo2ndresm 6229 fo2ndf 6294 f1o2ndf1 6295 smores 6359 smores2 6361 tfrlem1 6375 rdgival 6449 frec0g 6464 freccllem 6469 frecsuclem 6473 frecrdg 6475 resixp 6801 djulclr 7124 djurclr 7125 djur 7144 updjudhcoinlf 7155 updjudhcoinrg 7156 updjud 7157 finomni 7215 exmidfodomrlemrALT 7282 addpiord 7400 mulpiord 7401 suplocexprlemell 7797 fseq1p1m1 10186 seq3feq2 10585 seqf1oglem2 10629 seq3coll 10951 shftidt 11015 climres 11485 fisumss 11574 isumclim3 11605 fsum2dlemstep 11616 fprodssdc 11772 fprod2dlemstep 11804 reeff1 11882 eucalgcvga 12251 eucalg 12252 strslfv2d 12746 setsslid 12754 setsslnid 12755 resmhm 13189 resghm 13466 rngmgpf 13569 mgpf 13643 znf1o 14283 cnptopresti 14558 cnptoprest 14559 lmres 14568 tx1cn 14589 tx2cn 14590 cnmpt1st 14608 cnmpt2nd 14609 remetdval 14867 rescncf 14901 limcdifap 14982 limcresi 14986 plyreres 15084 reeff1o 15093 reefiso 15097 ioocosf1o 15174 relogcl 15182 relogef 15184 logltb 15194 mpodvdsmulf1o 15310 fsumdvdsmul 15311 djucllem 15530 012of 15724 2o01f 15725 |
| Copyright terms: Public domain | W3C validator |