![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isoresbr | GIF version |
Description: A consequence of isomorphism on two relations for a function's restriction. (Contributed by Jim Kingdon, 11-Jan-2019.) |
Ref | Expression |
---|---|
isoresbr | ⊢ ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isorel 5641 | . . . 4 ⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ ((𝐹 ↾ 𝐴)‘𝑥)𝑆((𝐹 ↾ 𝐴)‘𝑦))) | |
2 | fvres 5377 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑥) = (𝐹‘𝑥)) | |
3 | fvres 5377 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑦) = (𝐹‘𝑦)) | |
4 | 2, 3 | breqan12d 3890 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (((𝐹 ↾ 𝐴)‘𝑥)𝑆((𝐹 ↾ 𝐴)‘𝑦) ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
5 | 4 | adantl 273 | . . . 4 ⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑥)𝑆((𝐹 ↾ 𝐴)‘𝑦) ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
6 | 1, 5 | bitrd 187 | . . 3 ⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
7 | 6 | biimpd 143 | . 2 ⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
8 | 7 | ralrimivva 2473 | 1 ⊢ ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 1448 ∀wral 2375 class class class wbr 3875 ↾ cres 4479 “ cima 4480 ‘cfv 5059 Isom wiso 5060 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-xp 4483 df-res 4489 df-iota 5024 df-fv 5067 df-isom 5068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |