Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isoresbr | GIF version |
Description: A consequence of isomorphism on two relations for a function's restriction. (Contributed by Jim Kingdon, 11-Jan-2019.) |
Ref | Expression |
---|---|
isoresbr | ⊢ ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isorel 5776 | . . . 4 ⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ ((𝐹 ↾ 𝐴)‘𝑥)𝑆((𝐹 ↾ 𝐴)‘𝑦))) | |
2 | fvres 5510 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑥) = (𝐹‘𝑥)) | |
3 | fvres 5510 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑦) = (𝐹‘𝑦)) | |
4 | 2, 3 | breqan12d 3998 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (((𝐹 ↾ 𝐴)‘𝑥)𝑆((𝐹 ↾ 𝐴)‘𝑦) ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
5 | 4 | adantl 275 | . . . 4 ⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝐹 ↾ 𝐴)‘𝑥)𝑆((𝐹 ↾ 𝐴)‘𝑦) ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
6 | 1, 5 | bitrd 187 | . . 3 ⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
7 | 6 | biimpd 143 | . 2 ⊢ (((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
8 | 7 | ralrimivva 2548 | 1 ⊢ ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 ∀wral 2444 class class class wbr 3982 ↾ cres 4606 “ cima 4607 ‘cfv 5188 Isom wiso 5189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-res 4616 df-iota 5153 df-fv 5196 df-isom 5197 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |