ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoresbr GIF version

Theorem isoresbr 5901
Description: A consequence of isomorphism on two relations for a function's restriction. (Contributed by Jim Kingdon, 11-Jan-2019.)
Assertion
Ref Expression
isoresbr ((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦

Proof of Theorem isoresbr
StepHypRef Expression
1 isorel 5900 . . . 4 (((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 ↔ ((𝐹𝐴)‘𝑥)𝑆((𝐹𝐴)‘𝑦)))
2 fvres 5623 . . . . . 6 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
3 fvres 5623 . . . . . 6 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
42, 3breqan12d 4075 . . . . 5 ((𝑥𝐴𝑦𝐴) → (((𝐹𝐴)‘𝑥)𝑆((𝐹𝐴)‘𝑦) ↔ (𝐹𝑥)𝑆(𝐹𝑦)))
54adantl 277 . . . 4 (((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → (((𝐹𝐴)‘𝑥)𝑆((𝐹𝐴)‘𝑦) ↔ (𝐹𝑥)𝑆(𝐹𝑦)))
61, 5bitrd 188 . . 3 (((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 ↔ (𝐹𝑥)𝑆(𝐹𝑦)))
76biimpd 144 . 2 (((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦)))
87ralrimivva 2590 1 ((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2178  wral 2486   class class class wbr 4059  cres 4695  cima 4696  cfv 5290   Isom wiso 5291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-res 4705  df-iota 5251  df-fv 5298  df-isom 5299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator