ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  joinlmuladdmuld Unicode version

Theorem joinlmuladdmuld 7947
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
Hypotheses
Ref Expression
joinlmuladdmuld.1  |-  ( ph  ->  A  e.  CC )
joinlmuladdmuld.2  |-  ( ph  ->  B  e.  CC )
joinlmuladdmuld.3  |-  ( ph  ->  C  e.  CC )
joinlmuladdmuld.4  |-  ( ph  ->  ( ( A  x.  B )  +  ( C  x.  B ) )  =  D )
Assertion
Ref Expression
joinlmuladdmuld  |-  ( ph  ->  ( ( A  +  C )  x.  B
)  =  D )

Proof of Theorem joinlmuladdmuld
StepHypRef Expression
1 joinlmuladdmuld.1 . . 3  |-  ( ph  ->  A  e.  CC )
2 joinlmuladdmuld.3 . . 3  |-  ( ph  ->  C  e.  CC )
3 joinlmuladdmuld.2 . . 3  |-  ( ph  ->  B  e.  CC )
41, 2, 3adddird 7945 . 2  |-  ( ph  ->  ( ( A  +  C )  x.  B
)  =  ( ( A  x.  B )  +  ( C  x.  B ) ) )
5 joinlmuladdmuld.4 . 2  |-  ( ph  ->  ( ( A  x.  B )  +  ( C  x.  B ) )  =  D )
64, 5eqtrd 2203 1  |-  ( ph  ->  ( ( A  +  C )  x.  B
)  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141  (class class class)co 5853   CCcc 7772    + caddc 7777    x. cmul 7779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-addcl 7870  ax-mulcom 7875  ax-distr 7878
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  div4p1lem1div2  9131  arisum  11461  tangtx  13553  binom4  13691
  Copyright terms: Public domain W3C validator