ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  joinlmuladdmuld Unicode version

Theorem joinlmuladdmuld 8174
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
Hypotheses
Ref Expression
joinlmuladdmuld.1  |-  ( ph  ->  A  e.  CC )
joinlmuladdmuld.2  |-  ( ph  ->  B  e.  CC )
joinlmuladdmuld.3  |-  ( ph  ->  C  e.  CC )
joinlmuladdmuld.4  |-  ( ph  ->  ( ( A  x.  B )  +  ( C  x.  B ) )  =  D )
Assertion
Ref Expression
joinlmuladdmuld  |-  ( ph  ->  ( ( A  +  C )  x.  B
)  =  D )

Proof of Theorem joinlmuladdmuld
StepHypRef Expression
1 joinlmuladdmuld.1 . . 3  |-  ( ph  ->  A  e.  CC )
2 joinlmuladdmuld.3 . . 3  |-  ( ph  ->  C  e.  CC )
3 joinlmuladdmuld.2 . . 3  |-  ( ph  ->  B  e.  CC )
41, 2, 3adddird 8172 . 2  |-  ( ph  ->  ( ( A  +  C )  x.  B
)  =  ( ( A  x.  B )  +  ( C  x.  B ) ) )
5 joinlmuladdmuld.4 . 2  |-  ( ph  ->  ( ( A  x.  B )  +  ( C  x.  B ) )  =  D )
64, 5eqtrd 2262 1  |-  ( ph  ->  ( ( A  +  C )  x.  B
)  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997    + caddc 8002    x. cmul 8004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-addcl 8095  ax-mulcom 8100  ax-distr 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004
This theorem is referenced by:  div4p1lem1div2  9365  arisum  12009  tangtx  15512  binom4  15653
  Copyright terms: Public domain W3C validator