ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  joinlmuladdmuld Unicode version

Theorem joinlmuladdmuld 8071
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
Hypotheses
Ref Expression
joinlmuladdmuld.1  |-  ( ph  ->  A  e.  CC )
joinlmuladdmuld.2  |-  ( ph  ->  B  e.  CC )
joinlmuladdmuld.3  |-  ( ph  ->  C  e.  CC )
joinlmuladdmuld.4  |-  ( ph  ->  ( ( A  x.  B )  +  ( C  x.  B ) )  =  D )
Assertion
Ref Expression
joinlmuladdmuld  |-  ( ph  ->  ( ( A  +  C )  x.  B
)  =  D )

Proof of Theorem joinlmuladdmuld
StepHypRef Expression
1 joinlmuladdmuld.1 . . 3  |-  ( ph  ->  A  e.  CC )
2 joinlmuladdmuld.3 . . 3  |-  ( ph  ->  C  e.  CC )
3 joinlmuladdmuld.2 . . 3  |-  ( ph  ->  B  e.  CC )
41, 2, 3adddird 8069 . 2  |-  ( ph  ->  ( ( A  +  C )  x.  B
)  =  ( ( A  x.  B )  +  ( C  x.  B ) ) )
5 joinlmuladdmuld.4 . 2  |-  ( ph  ->  ( ( A  x.  B )  +  ( C  x.  B ) )  =  D )
64, 5eqtrd 2229 1  |-  ( ph  ->  ( ( A  +  C )  x.  B
)  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894    + caddc 7899    x. cmul 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-addcl 7992  ax-mulcom 7997  ax-distr 8000
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  div4p1lem1div2  9262  arisum  11680  tangtx  15158  binom4  15299
  Copyright terms: Public domain W3C validator