ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddird Unicode version

Theorem adddird 7938
Description: Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addcld.1  |-  ( ph  ->  A  e.  CC )
addcld.2  |-  ( ph  ->  B  e.  CC )
addassd.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
adddird  |-  ( ph  ->  ( ( A  +  B )  x.  C
)  =  ( ( A  x.  C )  +  ( B  x.  C ) ) )

Proof of Theorem adddird
StepHypRef Expression
1 addcld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addcld.2 . 2  |-  ( ph  ->  B  e.  CC )
3 addassd.3 . 2  |-  ( ph  ->  C  e.  CC )
4 adddir 7904 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C
) ) )
51, 2, 3, 4syl3anc 1233 1  |-  ( ph  ->  ( ( A  +  B )  x.  C
)  =  ( ( A  x.  C )  +  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141  (class class class)co 5851   CCcc 7765    + caddc 7770    x. cmul 7772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-addcl 7863  ax-mulcom 7868  ax-distr 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-iota 5158  df-fv 5204  df-ov 5854
This theorem is referenced by:  adddirp1d  7939  joinlmuladdmuld  7940  1p1times  8046  recextlem1  8562  divdirap  8607  subsq  10575  subsq2  10576  binom2  10580  binom3  10586  remullem  10828  resqrexlemover  10967  resqrexlemcalc1  10971  bdtrilem  11195  binomlem  11439  mul4sqlem  12338  dvexp  13434  rpcxpadd  13585  binom4  13656  2sqlem4  13713
  Copyright terms: Public domain W3C validator