| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddird | Unicode version | ||
| Description: Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| addcld.2 |
|
| addassd.3 |
|
| Ref | Expression |
|---|---|
| adddird |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | addcld.2 |
. 2
| |
| 3 | addassd.3 |
. 2
| |
| 4 | adddir 8022 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-addcl 7980 ax-mulcom 7985 ax-distr 7988 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: adddirp1d 8058 joinlmuladdmuld 8059 1p1times 8165 recextlem1 8683 divdirap 8729 subsq 10743 subsq2 10744 binom2 10748 binom3 10754 remullem 11041 resqrexlemover 11180 resqrexlemcalc1 11184 bdtrilem 11409 binomlem 11653 mul4sqlem 12575 dvexp 14994 plyaddlem1 15030 rpcxpadd 15188 binom4 15262 lgsquad2lem1 15369 2sqlem4 15406 |
| Copyright terms: Public domain | W3C validator |