ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div4p1lem1div2 Unicode version

Theorem div4p1lem1div2 8825
Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
div4p1lem1div2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )

Proof of Theorem div4p1lem1div2
StepHypRef Expression
1 6re 8659 . . . . . . 7  |-  6  e.  RR
21a1i 9 . . . . . 6  |-  ( N  e.  RR  ->  6  e.  RR )
3 id 19 . . . . . 6  |-  ( N  e.  RR  ->  N  e.  RR )
42, 3, 3leadd2d 8168 . . . . 5  |-  ( N  e.  RR  ->  (
6  <_  N  <->  ( N  +  6 )  <_ 
( N  +  N
) ) )
54biimpa 292 . . . 4  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  +  6 )  <_  ( N  +  N ) )
6 recn 7625 . . . . . 6  |-  ( N  e.  RR  ->  N  e.  CC )
76times2d 8815 . . . . 5  |-  ( N  e.  RR  ->  ( N  x.  2 )  =  ( N  +  N ) )
87adantr 272 . . . 4  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  x.  2 )  =  ( N  +  N ) )
95, 8breqtrrd 3901 . . 3  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  +  6 )  <_  ( N  x.  2 ) )
10 4cn 8656 . . . . . . . 8  |-  4  e.  CC
1110a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  e.  CC )
12 2cn 8649 . . . . . . . 8  |-  2  e.  CC
1312a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  2  e.  CC )
146, 11, 13addassd 7660 . . . . . 6  |-  ( N  e.  RR  ->  (
( N  +  4 )  +  2 )  =  ( N  +  ( 4  +  2 ) ) )
15 4p2e6 8715 . . . . . . 7  |-  ( 4  +  2 )  =  6
1615oveq2i 5717 . . . . . 6  |-  ( N  +  ( 4  +  2 ) )  =  ( N  +  6 )
1714, 16syl6eq 2148 . . . . 5  |-  ( N  e.  RR  ->  (
( N  +  4 )  +  2 )  =  ( N  + 
6 ) )
1817breq1d 3885 . . . 4  |-  ( N  e.  RR  ->  (
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 )  <->  ( N  +  6 )  <_ 
( N  x.  2 ) ) )
1918adantr 272 . . 3  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( ( N  +  4 )  +  2 )  <_  ( N  x.  2 )  <-> 
( N  +  6 )  <_  ( N  x.  2 ) ) )
209, 19mpbird 166 . 2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) )
21 4re 8655 . . . . . . . 8  |-  4  e.  RR
2221a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  e.  RR )
23 4ap0 8677 . . . . . . . 8  |-  4 #  0
2423a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4 #  0 )
253, 22, 24redivclapd 8455 . . . . . 6  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  RR )
26 peano2re 7769 . . . . . 6  |-  ( ( N  /  4 )  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
2725, 26syl 14 . . . . 5  |-  ( N  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
28 peano2rem 7900 . . . . . 6  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
2928rehalfcld 8818 . . . . 5  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  RR )
30 4pos 8675 . . . . . . 7  |-  0  <  4
3121, 30pm3.2i 268 . . . . . 6  |-  ( 4  e.  RR  /\  0  <  4 )
3231a1i 9 . . . . 5  |-  ( N  e.  RR  ->  (
4  e.  RR  /\  0  <  4 ) )
33 lemul1 8221 . . . . 5  |-  ( ( ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR  /\  ( 4  e.  RR  /\  0  <  4 ) )  ->  ( (
( N  /  4
)  +  1 )  <_  ( ( N  -  1 )  / 
2 )  <->  ( (
( N  /  4
)  +  1 )  x.  4 )  <_ 
( ( ( N  -  1 )  / 
2 )  x.  4 ) ) )
3427, 29, 32, 33syl3anc 1184 . . . 4  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 )  <->  ( (
( N  /  4
)  +  1 )  x.  4 )  <_ 
( ( ( N  -  1 )  / 
2 )  x.  4 ) ) )
3525recnd 7666 . . . . . 6  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  CC )
36 1cnd 7654 . . . . . 6  |-  ( N  e.  RR  ->  1  e.  CC )
376, 11, 24divcanap1d 8412 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  /  4
)  x.  4 )  =  N )
3810mulid2i 7641 . . . . . . . 8  |-  ( 1  x.  4 )  =  4
3938a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  (
1  x.  4 )  =  4 )
4037, 39oveq12d 5724 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  x.  4 )  +  ( 1  x.  4 ) )  =  ( N  + 
4 ) )
4135, 11, 36, 40joinlmuladdmuld 7665 . . . . 5  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  x.  4 )  =  ( N  + 
4 ) )
42 2t2e4 8726 . . . . . . . . 9  |-  ( 2  x.  2 )  =  4
4342eqcomi 2104 . . . . . . . 8  |-  4  =  ( 2  x.  2 )
4443a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  =  ( 2  x.  2 ) )
4544oveq2d 5722 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  4 )  =  ( ( ( N  -  1 )  /  2 )  x.  ( 2  x.  2 ) ) )
4629recnd 7666 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  CC )
47 mulass 7623 . . . . . . . 8  |-  ( ( ( ( N  - 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  2  e.  CC )  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( ( N  -  1 )  /  2 )  x.  ( 2  x.  2 ) ) )
4847eqcomd 2105 . . . . . . 7  |-  ( ( ( ( N  - 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  2  e.  CC )  ->  (
( ( N  - 
1 )  /  2
)  x.  ( 2  x.  2 ) )  =  ( ( ( ( N  -  1 )  /  2 )  x.  2 )  x.  2 ) )
4946, 13, 13, 48syl3anc 1184 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  ( 2  x.  2 ) )  =  ( ( ( ( N  -  1 )  /  2 )  x.  2 )  x.  2 ) )
5028recnd 7666 . . . . . . . . 9  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  CC )
51 2ap0 8671 . . . . . . . . . 10  |-  2 #  0
5251a1i 9 . . . . . . . . 9  |-  ( N  e.  RR  ->  2 #  0 )
5350, 13, 52divcanap1d 8412 . . . . . . . 8  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  2 )  =  ( N  - 
1 ) )
5453oveq1d 5721 . . . . . . 7  |-  ( N  e.  RR  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( N  -  1 )  x.  2 ) )
556, 36, 13subdird 8044 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  -  1 )  x.  2 )  =  ( ( N  x.  2 )  -  ( 1  x.  2 ) ) )
5612mulid2i 7641 . . . . . . . . 9  |-  ( 1  x.  2 )  =  2
5756a1i 9 . . . . . . . 8  |-  ( N  e.  RR  ->  (
1  x.  2 )  =  2 )
5857oveq2d 5722 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  x.  2 )  -  ( 1  x.  2 ) )  =  ( ( N  x.  2 )  - 
2 ) )
5954, 55, 583eqtrd 2136 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( N  x.  2 )  - 
2 ) )
6045, 49, 593eqtrd 2136 . . . . 5  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  4 )  =  ( ( N  x.  2 )  - 
2 ) )
6141, 60breq12d 3888 . . . 4  |-  ( N  e.  RR  ->  (
( ( ( N  /  4 )  +  1 )  x.  4 )  <_  ( (
( N  -  1 )  /  2 )  x.  4 )  <->  ( N  +  4 )  <_ 
( ( N  x.  2 )  -  2 ) ) )
623, 22readdcld 7667 . . . . 5  |-  ( N  e.  RR  ->  ( N  +  4 )  e.  RR )
63 2re 8648 . . . . . 6  |-  2  e.  RR
6463a1i 9 . . . . 5  |-  ( N  e.  RR  ->  2  e.  RR )
653, 64remulcld 7668 . . . . 5  |-  ( N  e.  RR  ->  ( N  x.  2 )  e.  RR )
66 leaddsub 8067 . . . . . 6  |-  ( ( ( N  +  4 )  e.  RR  /\  2  e.  RR  /\  ( N  x.  2 )  e.  RR )  -> 
( ( ( N  +  4 )  +  2 )  <_  ( N  x.  2 )  <-> 
( N  +  4 )  <_  ( ( N  x.  2 )  -  2 ) ) )
6766bicomd 140 . . . . 5  |-  ( ( ( N  +  4 )  e.  RR  /\  2  e.  RR  /\  ( N  x.  2 )  e.  RR )  -> 
( ( N  + 
4 )  <_  (
( N  x.  2 )  -  2 )  <-> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) ) )
6862, 64, 65, 67syl3anc 1184 . . . 4  |-  ( N  e.  RR  ->  (
( N  +  4 )  <_  ( ( N  x.  2 )  -  2 )  <->  ( ( N  +  4 )  +  2 )  <_ 
( N  x.  2 ) ) )
6934, 61, 683bitrd 213 . . 3  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 )  <->  ( ( N  +  4 )  +  2 )  <_ 
( N  x.  2 ) ) )
7069adantr 272 . 2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( ( N  /  4 )  +  1 )  <_  (
( N  -  1 )  /  2 )  <-> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) ) )
7120, 70mpbird 166 1  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 930    = wceq 1299    e. wcel 1448   class class class wbr 3875  (class class class)co 5706   CCcc 7498   RRcr 7499   0cc0 7500   1c1 7501    + caddc 7503    x. cmul 7505    < clt 7672    <_ cle 7673    - cmin 7804   # cap 8209    / cdiv 8293   2c2 8629   4c4 8631   6c6 8633
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-2 8637  df-3 8638  df-4 8639  df-5 8640  df-6 8641
This theorem is referenced by:  fldiv4p1lem1div2  9919
  Copyright terms: Public domain W3C validator