| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > div4p1lem1div2 | Unicode version | ||
| Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.) | 
| Ref | Expression | 
|---|---|
| div4p1lem1div2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 6re 9071 | 
. . . . . . 7
 | |
| 2 | 1 | a1i 9 | 
. . . . . 6
 | 
| 3 | id 19 | 
. . . . . 6
 | |
| 4 | 2, 3, 3 | leadd2d 8567 | 
. . . . 5
 | 
| 5 | 4 | biimpa 296 | 
. . . 4
 | 
| 6 | recn 8012 | 
. . . . . 6
 | |
| 7 | 6 | times2d 9235 | 
. . . . 5
 | 
| 8 | 7 | adantr 276 | 
. . . 4
 | 
| 9 | 5, 8 | breqtrrd 4061 | 
. . 3
 | 
| 10 | 4cn 9068 | 
. . . . . . . 8
 | |
| 11 | 10 | a1i 9 | 
. . . . . . 7
 | 
| 12 | 2cn 9061 | 
. . . . . . . 8
 | |
| 13 | 12 | a1i 9 | 
. . . . . . 7
 | 
| 14 | 6, 11, 13 | addassd 8049 | 
. . . . . 6
 | 
| 15 | 4p2e6 9134 | 
. . . . . . 7
 | |
| 16 | 15 | oveq2i 5933 | 
. . . . . 6
 | 
| 17 | 14, 16 | eqtrdi 2245 | 
. . . . 5
 | 
| 18 | 17 | breq1d 4043 | 
. . . 4
 | 
| 19 | 18 | adantr 276 | 
. . 3
 | 
| 20 | 9, 19 | mpbird 167 | 
. 2
 | 
| 21 | 4re 9067 | 
. . . . . . . 8
 | |
| 22 | 21 | a1i 9 | 
. . . . . . 7
 | 
| 23 | 4ap0 9089 | 
. . . . . . . 8
 | |
| 24 | 23 | a1i 9 | 
. . . . . . 7
 | 
| 25 | 3, 22, 24 | redivclapd 8862 | 
. . . . . 6
 | 
| 26 | peano2re 8162 | 
. . . . . 6
 | |
| 27 | 25, 26 | syl 14 | 
. . . . 5
 | 
| 28 | peano2rem 8293 | 
. . . . . 6
 | |
| 29 | 28 | rehalfcld 9238 | 
. . . . 5
 | 
| 30 | 4pos 9087 | 
. . . . . . 7
 | |
| 31 | 21, 30 | pm3.2i 272 | 
. . . . . 6
 | 
| 32 | 31 | a1i 9 | 
. . . . 5
 | 
| 33 | lemul1 8620 | 
. . . . 5
 | |
| 34 | 27, 29, 32, 33 | syl3anc 1249 | 
. . . 4
 | 
| 35 | 25 | recnd 8055 | 
. . . . . 6
 | 
| 36 | 1cnd 8042 | 
. . . . . 6
 | |
| 37 | 6, 11, 24 | divcanap1d 8818 | 
. . . . . . 7
 | 
| 38 | 10 | mullidi 8029 | 
. . . . . . . 8
 | 
| 39 | 38 | a1i 9 | 
. . . . . . 7
 | 
| 40 | 37, 39 | oveq12d 5940 | 
. . . . . 6
 | 
| 41 | 35, 11, 36, 40 | joinlmuladdmuld 8054 | 
. . . . 5
 | 
| 42 | 2t2e4 9145 | 
. . . . . . . . 9
 | |
| 43 | 42 | eqcomi 2200 | 
. . . . . . . 8
 | 
| 44 | 43 | a1i 9 | 
. . . . . . 7
 | 
| 45 | 44 | oveq2d 5938 | 
. . . . . 6
 | 
| 46 | 29 | recnd 8055 | 
. . . . . . 7
 | 
| 47 | mulass 8010 | 
. . . . . . . 8
 | |
| 48 | 47 | eqcomd 2202 | 
. . . . . . 7
 | 
| 49 | 46, 13, 13, 48 | syl3anc 1249 | 
. . . . . 6
 | 
| 50 | 28 | recnd 8055 | 
. . . . . . . . 9
 | 
| 51 | 2ap0 9083 | 
. . . . . . . . . 10
 | |
| 52 | 51 | a1i 9 | 
. . . . . . . . 9
 | 
| 53 | 50, 13, 52 | divcanap1d 8818 | 
. . . . . . . 8
 | 
| 54 | 53 | oveq1d 5937 | 
. . . . . . 7
 | 
| 55 | 6, 36, 13 | subdird 8441 | 
. . . . . . 7
 | 
| 56 | 12 | mullidi 8029 | 
. . . . . . . . 9
 | 
| 57 | 56 | a1i 9 | 
. . . . . . . 8
 | 
| 58 | 57 | oveq2d 5938 | 
. . . . . . 7
 | 
| 59 | 54, 55, 58 | 3eqtrd 2233 | 
. . . . . 6
 | 
| 60 | 45, 49, 59 | 3eqtrd 2233 | 
. . . . 5
 | 
| 61 | 41, 60 | breq12d 4046 | 
. . . 4
 | 
| 62 | 3, 22 | readdcld 8056 | 
. . . . 5
 | 
| 63 | 2re 9060 | 
. . . . . 6
 | |
| 64 | 63 | a1i 9 | 
. . . . 5
 | 
| 65 | 3, 64 | remulcld 8057 | 
. . . . 5
 | 
| 66 | leaddsub 8465 | 
. . . . . 6
 | |
| 67 | 66 | bicomd 141 | 
. . . . 5
 | 
| 68 | 62, 64, 65, 67 | syl3anc 1249 | 
. . . 4
 | 
| 69 | 34, 61, 68 | 3bitrd 214 | 
. . 3
 | 
| 70 | 69 | adantr 276 | 
. 2
 | 
| 71 | 20, 70 | mpbird 167 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 | 
| This theorem is referenced by: fldiv4p1lem1div2 10395 | 
| Copyright terms: Public domain | W3C validator |