ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div4p1lem1div2 Unicode version

Theorem div4p1lem1div2 9131
Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
div4p1lem1div2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )

Proof of Theorem div4p1lem1div2
StepHypRef Expression
1 6re 8959 . . . . . . 7  |-  6  e.  RR
21a1i 9 . . . . . 6  |-  ( N  e.  RR  ->  6  e.  RR )
3 id 19 . . . . . 6  |-  ( N  e.  RR  ->  N  e.  RR )
42, 3, 3leadd2d 8459 . . . . 5  |-  ( N  e.  RR  ->  (
6  <_  N  <->  ( N  +  6 )  <_ 
( N  +  N
) ) )
54biimpa 294 . . . 4  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  +  6 )  <_  ( N  +  N ) )
6 recn 7907 . . . . . 6  |-  ( N  e.  RR  ->  N  e.  CC )
76times2d 9121 . . . . 5  |-  ( N  e.  RR  ->  ( N  x.  2 )  =  ( N  +  N ) )
87adantr 274 . . . 4  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  x.  2 )  =  ( N  +  N ) )
95, 8breqtrrd 4017 . . 3  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  +  6 )  <_  ( N  x.  2 ) )
10 4cn 8956 . . . . . . . 8  |-  4  e.  CC
1110a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  e.  CC )
12 2cn 8949 . . . . . . . 8  |-  2  e.  CC
1312a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  2  e.  CC )
146, 11, 13addassd 7942 . . . . . 6  |-  ( N  e.  RR  ->  (
( N  +  4 )  +  2 )  =  ( N  +  ( 4  +  2 ) ) )
15 4p2e6 9021 . . . . . . 7  |-  ( 4  +  2 )  =  6
1615oveq2i 5864 . . . . . 6  |-  ( N  +  ( 4  +  2 ) )  =  ( N  +  6 )
1714, 16eqtrdi 2219 . . . . 5  |-  ( N  e.  RR  ->  (
( N  +  4 )  +  2 )  =  ( N  + 
6 ) )
1817breq1d 3999 . . . 4  |-  ( N  e.  RR  ->  (
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 )  <->  ( N  +  6 )  <_ 
( N  x.  2 ) ) )
1918adantr 274 . . 3  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( ( N  +  4 )  +  2 )  <_  ( N  x.  2 )  <-> 
( N  +  6 )  <_  ( N  x.  2 ) ) )
209, 19mpbird 166 . 2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) )
21 4re 8955 . . . . . . . 8  |-  4  e.  RR
2221a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  e.  RR )
23 4ap0 8977 . . . . . . . 8  |-  4 #  0
2423a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4 #  0 )
253, 22, 24redivclapd 8752 . . . . . 6  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  RR )
26 peano2re 8055 . . . . . 6  |-  ( ( N  /  4 )  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
2725, 26syl 14 . . . . 5  |-  ( N  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
28 peano2rem 8186 . . . . . 6  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
2928rehalfcld 9124 . . . . 5  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  RR )
30 4pos 8975 . . . . . . 7  |-  0  <  4
3121, 30pm3.2i 270 . . . . . 6  |-  ( 4  e.  RR  /\  0  <  4 )
3231a1i 9 . . . . 5  |-  ( N  e.  RR  ->  (
4  e.  RR  /\  0  <  4 ) )
33 lemul1 8512 . . . . 5  |-  ( ( ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR  /\  ( 4  e.  RR  /\  0  <  4 ) )  ->  ( (
( N  /  4
)  +  1 )  <_  ( ( N  -  1 )  / 
2 )  <->  ( (
( N  /  4
)  +  1 )  x.  4 )  <_ 
( ( ( N  -  1 )  / 
2 )  x.  4 ) ) )
3427, 29, 32, 33syl3anc 1233 . . . 4  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 )  <->  ( (
( N  /  4
)  +  1 )  x.  4 )  <_ 
( ( ( N  -  1 )  / 
2 )  x.  4 ) ) )
3525recnd 7948 . . . . . 6  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  CC )
36 1cnd 7936 . . . . . 6  |-  ( N  e.  RR  ->  1  e.  CC )
376, 11, 24divcanap1d 8708 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  /  4
)  x.  4 )  =  N )
3810mulid2i 7923 . . . . . . . 8  |-  ( 1  x.  4 )  =  4
3938a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  (
1  x.  4 )  =  4 )
4037, 39oveq12d 5871 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  x.  4 )  +  ( 1  x.  4 ) )  =  ( N  + 
4 ) )
4135, 11, 36, 40joinlmuladdmuld 7947 . . . . 5  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  x.  4 )  =  ( N  + 
4 ) )
42 2t2e4 9032 . . . . . . . . 9  |-  ( 2  x.  2 )  =  4
4342eqcomi 2174 . . . . . . . 8  |-  4  =  ( 2  x.  2 )
4443a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  =  ( 2  x.  2 ) )
4544oveq2d 5869 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  4 )  =  ( ( ( N  -  1 )  /  2 )  x.  ( 2  x.  2 ) ) )
4629recnd 7948 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  CC )
47 mulass 7905 . . . . . . . 8  |-  ( ( ( ( N  - 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  2  e.  CC )  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( ( N  -  1 )  /  2 )  x.  ( 2  x.  2 ) ) )
4847eqcomd 2176 . . . . . . 7  |-  ( ( ( ( N  - 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  2  e.  CC )  ->  (
( ( N  - 
1 )  /  2
)  x.  ( 2  x.  2 ) )  =  ( ( ( ( N  -  1 )  /  2 )  x.  2 )  x.  2 ) )
4946, 13, 13, 48syl3anc 1233 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  ( 2  x.  2 ) )  =  ( ( ( ( N  -  1 )  /  2 )  x.  2 )  x.  2 ) )
5028recnd 7948 . . . . . . . . 9  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  CC )
51 2ap0 8971 . . . . . . . . . 10  |-  2 #  0
5251a1i 9 . . . . . . . . 9  |-  ( N  e.  RR  ->  2 #  0 )
5350, 13, 52divcanap1d 8708 . . . . . . . 8  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  2 )  =  ( N  - 
1 ) )
5453oveq1d 5868 . . . . . . 7  |-  ( N  e.  RR  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( N  -  1 )  x.  2 ) )
556, 36, 13subdird 8334 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  -  1 )  x.  2 )  =  ( ( N  x.  2 )  -  ( 1  x.  2 ) ) )
5612mulid2i 7923 . . . . . . . . 9  |-  ( 1  x.  2 )  =  2
5756a1i 9 . . . . . . . 8  |-  ( N  e.  RR  ->  (
1  x.  2 )  =  2 )
5857oveq2d 5869 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  x.  2 )  -  ( 1  x.  2 ) )  =  ( ( N  x.  2 )  - 
2 ) )
5954, 55, 583eqtrd 2207 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( N  x.  2 )  - 
2 ) )
6045, 49, 593eqtrd 2207 . . . . 5  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  4 )  =  ( ( N  x.  2 )  - 
2 ) )
6141, 60breq12d 4002 . . . 4  |-  ( N  e.  RR  ->  (
( ( ( N  /  4 )  +  1 )  x.  4 )  <_  ( (
( N  -  1 )  /  2 )  x.  4 )  <->  ( N  +  4 )  <_ 
( ( N  x.  2 )  -  2 ) ) )
623, 22readdcld 7949 . . . . 5  |-  ( N  e.  RR  ->  ( N  +  4 )  e.  RR )
63 2re 8948 . . . . . 6  |-  2  e.  RR
6463a1i 9 . . . . 5  |-  ( N  e.  RR  ->  2  e.  RR )
653, 64remulcld 7950 . . . . 5  |-  ( N  e.  RR  ->  ( N  x.  2 )  e.  RR )
66 leaddsub 8357 . . . . . 6  |-  ( ( ( N  +  4 )  e.  RR  /\  2  e.  RR  /\  ( N  x.  2 )  e.  RR )  -> 
( ( ( N  +  4 )  +  2 )  <_  ( N  x.  2 )  <-> 
( N  +  4 )  <_  ( ( N  x.  2 )  -  2 ) ) )
6766bicomd 140 . . . . 5  |-  ( ( ( N  +  4 )  e.  RR  /\  2  e.  RR  /\  ( N  x.  2 )  e.  RR )  -> 
( ( N  + 
4 )  <_  (
( N  x.  2 )  -  2 )  <-> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) ) )
6862, 64, 65, 67syl3anc 1233 . . . 4  |-  ( N  e.  RR  ->  (
( N  +  4 )  <_  ( ( N  x.  2 )  -  2 )  <->  ( ( N  +  4 )  +  2 )  <_ 
( N  x.  2 ) ) )
6934, 61, 683bitrd 213 . . 3  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 )  <->  ( ( N  +  4 )  +  2 )  <_ 
( N  x.  2 ) ) )
7069adantr 274 . 2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( ( N  /  4 )  +  1 )  <_  (
( N  -  1 )  /  2 )  <-> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) ) )
7120, 70mpbird 166 1  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090   # cap 8500    / cdiv 8589   2c2 8929   4c4 8931   6c6 8933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941
This theorem is referenced by:  fldiv4p1lem1div2  10261
  Copyright terms: Public domain W3C validator