ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div4p1lem1div2 Unicode version

Theorem div4p1lem1div2 8996
Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
div4p1lem1div2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )

Proof of Theorem div4p1lem1div2
StepHypRef Expression
1 6re 8824 . . . . . . 7  |-  6  e.  RR
21a1i 9 . . . . . 6  |-  ( N  e.  RR  ->  6  e.  RR )
3 id 19 . . . . . 6  |-  ( N  e.  RR  ->  N  e.  RR )
42, 3, 3leadd2d 8325 . . . . 5  |-  ( N  e.  RR  ->  (
6  <_  N  <->  ( N  +  6 )  <_ 
( N  +  N
) ) )
54biimpa 294 . . . 4  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  +  6 )  <_  ( N  +  N ) )
6 recn 7776 . . . . . 6  |-  ( N  e.  RR  ->  N  e.  CC )
76times2d 8986 . . . . 5  |-  ( N  e.  RR  ->  ( N  x.  2 )  =  ( N  +  N ) )
87adantr 274 . . . 4  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  x.  2 )  =  ( N  +  N ) )
95, 8breqtrrd 3963 . . 3  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  +  6 )  <_  ( N  x.  2 ) )
10 4cn 8821 . . . . . . . 8  |-  4  e.  CC
1110a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  e.  CC )
12 2cn 8814 . . . . . . . 8  |-  2  e.  CC
1312a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  2  e.  CC )
146, 11, 13addassd 7811 . . . . . 6  |-  ( N  e.  RR  ->  (
( N  +  4 )  +  2 )  =  ( N  +  ( 4  +  2 ) ) )
15 4p2e6 8886 . . . . . . 7  |-  ( 4  +  2 )  =  6
1615oveq2i 5792 . . . . . 6  |-  ( N  +  ( 4  +  2 ) )  =  ( N  +  6 )
1714, 16eqtrdi 2189 . . . . 5  |-  ( N  e.  RR  ->  (
( N  +  4 )  +  2 )  =  ( N  + 
6 ) )
1817breq1d 3946 . . . 4  |-  ( N  e.  RR  ->  (
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 )  <->  ( N  +  6 )  <_ 
( N  x.  2 ) ) )
1918adantr 274 . . 3  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( ( N  +  4 )  +  2 )  <_  ( N  x.  2 )  <-> 
( N  +  6 )  <_  ( N  x.  2 ) ) )
209, 19mpbird 166 . 2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) )
21 4re 8820 . . . . . . . 8  |-  4  e.  RR
2221a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  e.  RR )
23 4ap0 8842 . . . . . . . 8  |-  4 #  0
2423a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4 #  0 )
253, 22, 24redivclapd 8617 . . . . . 6  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  RR )
26 peano2re 7921 . . . . . 6  |-  ( ( N  /  4 )  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
2725, 26syl 14 . . . . 5  |-  ( N  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
28 peano2rem 8052 . . . . . 6  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
2928rehalfcld 8989 . . . . 5  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  RR )
30 4pos 8840 . . . . . . 7  |-  0  <  4
3121, 30pm3.2i 270 . . . . . 6  |-  ( 4  e.  RR  /\  0  <  4 )
3231a1i 9 . . . . 5  |-  ( N  e.  RR  ->  (
4  e.  RR  /\  0  <  4 ) )
33 lemul1 8378 . . . . 5  |-  ( ( ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR  /\  ( 4  e.  RR  /\  0  <  4 ) )  ->  ( (
( N  /  4
)  +  1 )  <_  ( ( N  -  1 )  / 
2 )  <->  ( (
( N  /  4
)  +  1 )  x.  4 )  <_ 
( ( ( N  -  1 )  / 
2 )  x.  4 ) ) )
3427, 29, 32, 33syl3anc 1217 . . . 4  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 )  <->  ( (
( N  /  4
)  +  1 )  x.  4 )  <_ 
( ( ( N  -  1 )  / 
2 )  x.  4 ) ) )
3525recnd 7817 . . . . . 6  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  CC )
36 1cnd 7805 . . . . . 6  |-  ( N  e.  RR  ->  1  e.  CC )
376, 11, 24divcanap1d 8574 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  /  4
)  x.  4 )  =  N )
3810mulid2i 7792 . . . . . . . 8  |-  ( 1  x.  4 )  =  4
3938a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  (
1  x.  4 )  =  4 )
4037, 39oveq12d 5799 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  x.  4 )  +  ( 1  x.  4 ) )  =  ( N  + 
4 ) )
4135, 11, 36, 40joinlmuladdmuld 7816 . . . . 5  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  x.  4 )  =  ( N  + 
4 ) )
42 2t2e4 8897 . . . . . . . . 9  |-  ( 2  x.  2 )  =  4
4342eqcomi 2144 . . . . . . . 8  |-  4  =  ( 2  x.  2 )
4443a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  =  ( 2  x.  2 ) )
4544oveq2d 5797 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  4 )  =  ( ( ( N  -  1 )  /  2 )  x.  ( 2  x.  2 ) ) )
4629recnd 7817 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  CC )
47 mulass 7774 . . . . . . . 8  |-  ( ( ( ( N  - 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  2  e.  CC )  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( ( N  -  1 )  /  2 )  x.  ( 2  x.  2 ) ) )
4847eqcomd 2146 . . . . . . 7  |-  ( ( ( ( N  - 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  2  e.  CC )  ->  (
( ( N  - 
1 )  /  2
)  x.  ( 2  x.  2 ) )  =  ( ( ( ( N  -  1 )  /  2 )  x.  2 )  x.  2 ) )
4946, 13, 13, 48syl3anc 1217 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  ( 2  x.  2 ) )  =  ( ( ( ( N  -  1 )  /  2 )  x.  2 )  x.  2 ) )
5028recnd 7817 . . . . . . . . 9  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  CC )
51 2ap0 8836 . . . . . . . . . 10  |-  2 #  0
5251a1i 9 . . . . . . . . 9  |-  ( N  e.  RR  ->  2 #  0 )
5350, 13, 52divcanap1d 8574 . . . . . . . 8  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  2 )  =  ( N  - 
1 ) )
5453oveq1d 5796 . . . . . . 7  |-  ( N  e.  RR  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( N  -  1 )  x.  2 ) )
556, 36, 13subdird 8200 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  -  1 )  x.  2 )  =  ( ( N  x.  2 )  -  ( 1  x.  2 ) ) )
5612mulid2i 7792 . . . . . . . . 9  |-  ( 1  x.  2 )  =  2
5756a1i 9 . . . . . . . 8  |-  ( N  e.  RR  ->  (
1  x.  2 )  =  2 )
5857oveq2d 5797 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  x.  2 )  -  ( 1  x.  2 ) )  =  ( ( N  x.  2 )  - 
2 ) )
5954, 55, 583eqtrd 2177 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( N  x.  2 )  - 
2 ) )
6045, 49, 593eqtrd 2177 . . . . 5  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  4 )  =  ( ( N  x.  2 )  - 
2 ) )
6141, 60breq12d 3949 . . . 4  |-  ( N  e.  RR  ->  (
( ( ( N  /  4 )  +  1 )  x.  4 )  <_  ( (
( N  -  1 )  /  2 )  x.  4 )  <->  ( N  +  4 )  <_ 
( ( N  x.  2 )  -  2 ) ) )
623, 22readdcld 7818 . . . . 5  |-  ( N  e.  RR  ->  ( N  +  4 )  e.  RR )
63 2re 8813 . . . . . 6  |-  2  e.  RR
6463a1i 9 . . . . 5  |-  ( N  e.  RR  ->  2  e.  RR )
653, 64remulcld 7819 . . . . 5  |-  ( N  e.  RR  ->  ( N  x.  2 )  e.  RR )
66 leaddsub 8223 . . . . . 6  |-  ( ( ( N  +  4 )  e.  RR  /\  2  e.  RR  /\  ( N  x.  2 )  e.  RR )  -> 
( ( ( N  +  4 )  +  2 )  <_  ( N  x.  2 )  <-> 
( N  +  4 )  <_  ( ( N  x.  2 )  -  2 ) ) )
6766bicomd 140 . . . . 5  |-  ( ( ( N  +  4 )  e.  RR  /\  2  e.  RR  /\  ( N  x.  2 )  e.  RR )  -> 
( ( N  + 
4 )  <_  (
( N  x.  2 )  -  2 )  <-> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) ) )
6862, 64, 65, 67syl3anc 1217 . . . 4  |-  ( N  e.  RR  ->  (
( N  +  4 )  <_  ( ( N  x.  2 )  -  2 )  <->  ( ( N  +  4 )  +  2 )  <_ 
( N  x.  2 ) ) )
6934, 61, 683bitrd 213 . . 3  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 )  <->  ( ( N  +  4 )  +  2 )  <_ 
( N  x.  2 ) ) )
7069adantr 274 . 2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( ( N  /  4 )  +  1 )  <_  (
( N  -  1 )  /  2 )  <-> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) ) )
7120, 70mpbird 166 1  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3936  (class class class)co 5781   CCcc 7641   RRcr 7642   0cc0 7643   1c1 7644    + caddc 7646    x. cmul 7648    < clt 7823    <_ cle 7824    - cmin 7956   # cap 8366    / cdiv 8455   2c2 8794   4c4 8796   6c6 8798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-id 4222  df-po 4225  df-iso 4226  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-iota 5095  df-fun 5132  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-2 8802  df-3 8803  df-4 8804  df-5 8805  df-6 8806
This theorem is referenced by:  fldiv4p1lem1div2  10108
  Copyright terms: Public domain W3C validator