ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div4p1lem1div2 Unicode version

Theorem div4p1lem1div2 9110
Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
div4p1lem1div2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )

Proof of Theorem div4p1lem1div2
StepHypRef Expression
1 6re 8938 . . . . . . 7  |-  6  e.  RR
21a1i 9 . . . . . 6  |-  ( N  e.  RR  ->  6  e.  RR )
3 id 19 . . . . . 6  |-  ( N  e.  RR  ->  N  e.  RR )
42, 3, 3leadd2d 8438 . . . . 5  |-  ( N  e.  RR  ->  (
6  <_  N  <->  ( N  +  6 )  <_ 
( N  +  N
) ) )
54biimpa 294 . . . 4  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  +  6 )  <_  ( N  +  N ) )
6 recn 7886 . . . . . 6  |-  ( N  e.  RR  ->  N  e.  CC )
76times2d 9100 . . . . 5  |-  ( N  e.  RR  ->  ( N  x.  2 )  =  ( N  +  N ) )
87adantr 274 . . . 4  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  x.  2 )  =  ( N  +  N ) )
95, 8breqtrrd 4010 . . 3  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  +  6 )  <_  ( N  x.  2 ) )
10 4cn 8935 . . . . . . . 8  |-  4  e.  CC
1110a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  e.  CC )
12 2cn 8928 . . . . . . . 8  |-  2  e.  CC
1312a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  2  e.  CC )
146, 11, 13addassd 7921 . . . . . 6  |-  ( N  e.  RR  ->  (
( N  +  4 )  +  2 )  =  ( N  +  ( 4  +  2 ) ) )
15 4p2e6 9000 . . . . . . 7  |-  ( 4  +  2 )  =  6
1615oveq2i 5853 . . . . . 6  |-  ( N  +  ( 4  +  2 ) )  =  ( N  +  6 )
1714, 16eqtrdi 2215 . . . . 5  |-  ( N  e.  RR  ->  (
( N  +  4 )  +  2 )  =  ( N  + 
6 ) )
1817breq1d 3992 . . . 4  |-  ( N  e.  RR  ->  (
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 )  <->  ( N  +  6 )  <_ 
( N  x.  2 ) ) )
1918adantr 274 . . 3  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( ( N  +  4 )  +  2 )  <_  ( N  x.  2 )  <-> 
( N  +  6 )  <_  ( N  x.  2 ) ) )
209, 19mpbird 166 . 2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) )
21 4re 8934 . . . . . . . 8  |-  4  e.  RR
2221a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  e.  RR )
23 4ap0 8956 . . . . . . . 8  |-  4 #  0
2423a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4 #  0 )
253, 22, 24redivclapd 8731 . . . . . 6  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  RR )
26 peano2re 8034 . . . . . 6  |-  ( ( N  /  4 )  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
2725, 26syl 14 . . . . 5  |-  ( N  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
28 peano2rem 8165 . . . . . 6  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
2928rehalfcld 9103 . . . . 5  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  RR )
30 4pos 8954 . . . . . . 7  |-  0  <  4
3121, 30pm3.2i 270 . . . . . 6  |-  ( 4  e.  RR  /\  0  <  4 )
3231a1i 9 . . . . 5  |-  ( N  e.  RR  ->  (
4  e.  RR  /\  0  <  4 ) )
33 lemul1 8491 . . . . 5  |-  ( ( ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR  /\  ( 4  e.  RR  /\  0  <  4 ) )  ->  ( (
( N  /  4
)  +  1 )  <_  ( ( N  -  1 )  / 
2 )  <->  ( (
( N  /  4
)  +  1 )  x.  4 )  <_ 
( ( ( N  -  1 )  / 
2 )  x.  4 ) ) )
3427, 29, 32, 33syl3anc 1228 . . . 4  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 )  <->  ( (
( N  /  4
)  +  1 )  x.  4 )  <_ 
( ( ( N  -  1 )  / 
2 )  x.  4 ) ) )
3525recnd 7927 . . . . . 6  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  CC )
36 1cnd 7915 . . . . . 6  |-  ( N  e.  RR  ->  1  e.  CC )
376, 11, 24divcanap1d 8687 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  /  4
)  x.  4 )  =  N )
3810mulid2i 7902 . . . . . . . 8  |-  ( 1  x.  4 )  =  4
3938a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  (
1  x.  4 )  =  4 )
4037, 39oveq12d 5860 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  x.  4 )  +  ( 1  x.  4 ) )  =  ( N  + 
4 ) )
4135, 11, 36, 40joinlmuladdmuld 7926 . . . . 5  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  x.  4 )  =  ( N  + 
4 ) )
42 2t2e4 9011 . . . . . . . . 9  |-  ( 2  x.  2 )  =  4
4342eqcomi 2169 . . . . . . . 8  |-  4  =  ( 2  x.  2 )
4443a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  =  ( 2  x.  2 ) )
4544oveq2d 5858 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  4 )  =  ( ( ( N  -  1 )  /  2 )  x.  ( 2  x.  2 ) ) )
4629recnd 7927 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  CC )
47 mulass 7884 . . . . . . . 8  |-  ( ( ( ( N  - 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  2  e.  CC )  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( ( N  -  1 )  /  2 )  x.  ( 2  x.  2 ) ) )
4847eqcomd 2171 . . . . . . 7  |-  ( ( ( ( N  - 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  2  e.  CC )  ->  (
( ( N  - 
1 )  /  2
)  x.  ( 2  x.  2 ) )  =  ( ( ( ( N  -  1 )  /  2 )  x.  2 )  x.  2 ) )
4946, 13, 13, 48syl3anc 1228 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  ( 2  x.  2 ) )  =  ( ( ( ( N  -  1 )  /  2 )  x.  2 )  x.  2 ) )
5028recnd 7927 . . . . . . . . 9  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  CC )
51 2ap0 8950 . . . . . . . . . 10  |-  2 #  0
5251a1i 9 . . . . . . . . 9  |-  ( N  e.  RR  ->  2 #  0 )
5350, 13, 52divcanap1d 8687 . . . . . . . 8  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  2 )  =  ( N  - 
1 ) )
5453oveq1d 5857 . . . . . . 7  |-  ( N  e.  RR  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( N  -  1 )  x.  2 ) )
556, 36, 13subdird 8313 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  -  1 )  x.  2 )  =  ( ( N  x.  2 )  -  ( 1  x.  2 ) ) )
5612mulid2i 7902 . . . . . . . . 9  |-  ( 1  x.  2 )  =  2
5756a1i 9 . . . . . . . 8  |-  ( N  e.  RR  ->  (
1  x.  2 )  =  2 )
5857oveq2d 5858 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  x.  2 )  -  ( 1  x.  2 ) )  =  ( ( N  x.  2 )  - 
2 ) )
5954, 55, 583eqtrd 2202 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( N  x.  2 )  - 
2 ) )
6045, 49, 593eqtrd 2202 . . . . 5  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  4 )  =  ( ( N  x.  2 )  - 
2 ) )
6141, 60breq12d 3995 . . . 4  |-  ( N  e.  RR  ->  (
( ( ( N  /  4 )  +  1 )  x.  4 )  <_  ( (
( N  -  1 )  /  2 )  x.  4 )  <->  ( N  +  4 )  <_ 
( ( N  x.  2 )  -  2 ) ) )
623, 22readdcld 7928 . . . . 5  |-  ( N  e.  RR  ->  ( N  +  4 )  e.  RR )
63 2re 8927 . . . . . 6  |-  2  e.  RR
6463a1i 9 . . . . 5  |-  ( N  e.  RR  ->  2  e.  RR )
653, 64remulcld 7929 . . . . 5  |-  ( N  e.  RR  ->  ( N  x.  2 )  e.  RR )
66 leaddsub 8336 . . . . . 6  |-  ( ( ( N  +  4 )  e.  RR  /\  2  e.  RR  /\  ( N  x.  2 )  e.  RR )  -> 
( ( ( N  +  4 )  +  2 )  <_  ( N  x.  2 )  <-> 
( N  +  4 )  <_  ( ( N  x.  2 )  -  2 ) ) )
6766bicomd 140 . . . . 5  |-  ( ( ( N  +  4 )  e.  RR  /\  2  e.  RR  /\  ( N  x.  2 )  e.  RR )  -> 
( ( N  + 
4 )  <_  (
( N  x.  2 )  -  2 )  <-> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) ) )
6862, 64, 65, 67syl3anc 1228 . . . 4  |-  ( N  e.  RR  ->  (
( N  +  4 )  <_  ( ( N  x.  2 )  -  2 )  <->  ( ( N  +  4 )  +  2 )  <_ 
( N  x.  2 ) ) )
6934, 61, 683bitrd 213 . . 3  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 )  <->  ( ( N  +  4 )  +  2 )  <_ 
( N  x.  2 ) ) )
7069adantr 274 . 2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( ( N  /  4 )  +  1 )  <_  (
( N  -  1 )  /  2 )  <-> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) ) )
7120, 70mpbird 166 1  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    < clt 7933    <_ cle 7934    - cmin 8069   # cap 8479    / cdiv 8568   2c2 8908   4c4 8910   6c6 8912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920
This theorem is referenced by:  fldiv4p1lem1div2  10240
  Copyright terms: Public domain W3C validator