| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > div4p1lem1div2 | Unicode version | ||
| Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.) |
| Ref | Expression |
|---|---|
| div4p1lem1div2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6re 9152 |
. . . . . . 7
| |
| 2 | 1 | a1i 9 |
. . . . . 6
|
| 3 | id 19 |
. . . . . 6
| |
| 4 | 2, 3, 3 | leadd2d 8648 |
. . . . 5
|
| 5 | 4 | biimpa 296 |
. . . 4
|
| 6 | recn 8093 |
. . . . . 6
| |
| 7 | 6 | times2d 9316 |
. . . . 5
|
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | 5, 8 | breqtrrd 4087 |
. . 3
|
| 10 | 4cn 9149 |
. . . . . . . 8
| |
| 11 | 10 | a1i 9 |
. . . . . . 7
|
| 12 | 2cn 9142 |
. . . . . . . 8
| |
| 13 | 12 | a1i 9 |
. . . . . . 7
|
| 14 | 6, 11, 13 | addassd 8130 |
. . . . . 6
|
| 15 | 4p2e6 9215 |
. . . . . . 7
| |
| 16 | 15 | oveq2i 5978 |
. . . . . 6
|
| 17 | 14, 16 | eqtrdi 2256 |
. . . . 5
|
| 18 | 17 | breq1d 4069 |
. . . 4
|
| 19 | 18 | adantr 276 |
. . 3
|
| 20 | 9, 19 | mpbird 167 |
. 2
|
| 21 | 4re 9148 |
. . . . . . . 8
| |
| 22 | 21 | a1i 9 |
. . . . . . 7
|
| 23 | 4ap0 9170 |
. . . . . . . 8
| |
| 24 | 23 | a1i 9 |
. . . . . . 7
|
| 25 | 3, 22, 24 | redivclapd 8943 |
. . . . . 6
|
| 26 | peano2re 8243 |
. . . . . 6
| |
| 27 | 25, 26 | syl 14 |
. . . . 5
|
| 28 | peano2rem 8374 |
. . . . . 6
| |
| 29 | 28 | rehalfcld 9319 |
. . . . 5
|
| 30 | 4pos 9168 |
. . . . . . 7
| |
| 31 | 21, 30 | pm3.2i 272 |
. . . . . 6
|
| 32 | 31 | a1i 9 |
. . . . 5
|
| 33 | lemul1 8701 |
. . . . 5
| |
| 34 | 27, 29, 32, 33 | syl3anc 1250 |
. . . 4
|
| 35 | 25 | recnd 8136 |
. . . . . 6
|
| 36 | 1cnd 8123 |
. . . . . 6
| |
| 37 | 6, 11, 24 | divcanap1d 8899 |
. . . . . . 7
|
| 38 | 10 | mullidi 8110 |
. . . . . . . 8
|
| 39 | 38 | a1i 9 |
. . . . . . 7
|
| 40 | 37, 39 | oveq12d 5985 |
. . . . . 6
|
| 41 | 35, 11, 36, 40 | joinlmuladdmuld 8135 |
. . . . 5
|
| 42 | 2t2e4 9226 |
. . . . . . . . 9
| |
| 43 | 42 | eqcomi 2211 |
. . . . . . . 8
|
| 44 | 43 | a1i 9 |
. . . . . . 7
|
| 45 | 44 | oveq2d 5983 |
. . . . . 6
|
| 46 | 29 | recnd 8136 |
. . . . . . 7
|
| 47 | mulass 8091 |
. . . . . . . 8
| |
| 48 | 47 | eqcomd 2213 |
. . . . . . 7
|
| 49 | 46, 13, 13, 48 | syl3anc 1250 |
. . . . . 6
|
| 50 | 28 | recnd 8136 |
. . . . . . . . 9
|
| 51 | 2ap0 9164 |
. . . . . . . . . 10
| |
| 52 | 51 | a1i 9 |
. . . . . . . . 9
|
| 53 | 50, 13, 52 | divcanap1d 8899 |
. . . . . . . 8
|
| 54 | 53 | oveq1d 5982 |
. . . . . . 7
|
| 55 | 6, 36, 13 | subdird 8522 |
. . . . . . 7
|
| 56 | 12 | mullidi 8110 |
. . . . . . . . 9
|
| 57 | 56 | a1i 9 |
. . . . . . . 8
|
| 58 | 57 | oveq2d 5983 |
. . . . . . 7
|
| 59 | 54, 55, 58 | 3eqtrd 2244 |
. . . . . 6
|
| 60 | 45, 49, 59 | 3eqtrd 2244 |
. . . . 5
|
| 61 | 41, 60 | breq12d 4072 |
. . . 4
|
| 62 | 3, 22 | readdcld 8137 |
. . . . 5
|
| 63 | 2re 9141 |
. . . . . 6
| |
| 64 | 63 | a1i 9 |
. . . . 5
|
| 65 | 3, 64 | remulcld 8138 |
. . . . 5
|
| 66 | leaddsub 8546 |
. . . . . 6
| |
| 67 | 66 | bicomd 141 |
. . . . 5
|
| 68 | 62, 64, 65, 67 | syl3anc 1250 |
. . . 4
|
| 69 | 34, 61, 68 | 3bitrd 214 |
. . 3
|
| 70 | 69 | adantr 276 |
. 2
|
| 71 | 20, 70 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 |
| This theorem is referenced by: fldiv4p1lem1div2 10485 |
| Copyright terms: Public domain | W3C validator |