| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > div4p1lem1div2 | Unicode version | ||
| Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.) |
| Ref | Expression |
|---|---|
| div4p1lem1div2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6re 9088 |
. . . . . . 7
| |
| 2 | 1 | a1i 9 |
. . . . . 6
|
| 3 | id 19 |
. . . . . 6
| |
| 4 | 2, 3, 3 | leadd2d 8584 |
. . . . 5
|
| 5 | 4 | biimpa 296 |
. . . 4
|
| 6 | recn 8029 |
. . . . . 6
| |
| 7 | 6 | times2d 9252 |
. . . . 5
|
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | 5, 8 | breqtrrd 4062 |
. . 3
|
| 10 | 4cn 9085 |
. . . . . . . 8
| |
| 11 | 10 | a1i 9 |
. . . . . . 7
|
| 12 | 2cn 9078 |
. . . . . . . 8
| |
| 13 | 12 | a1i 9 |
. . . . . . 7
|
| 14 | 6, 11, 13 | addassd 8066 |
. . . . . 6
|
| 15 | 4p2e6 9151 |
. . . . . . 7
| |
| 16 | 15 | oveq2i 5936 |
. . . . . 6
|
| 17 | 14, 16 | eqtrdi 2245 |
. . . . 5
|
| 18 | 17 | breq1d 4044 |
. . . 4
|
| 19 | 18 | adantr 276 |
. . 3
|
| 20 | 9, 19 | mpbird 167 |
. 2
|
| 21 | 4re 9084 |
. . . . . . . 8
| |
| 22 | 21 | a1i 9 |
. . . . . . 7
|
| 23 | 4ap0 9106 |
. . . . . . . 8
| |
| 24 | 23 | a1i 9 |
. . . . . . 7
|
| 25 | 3, 22, 24 | redivclapd 8879 |
. . . . . 6
|
| 26 | peano2re 8179 |
. . . . . 6
| |
| 27 | 25, 26 | syl 14 |
. . . . 5
|
| 28 | peano2rem 8310 |
. . . . . 6
| |
| 29 | 28 | rehalfcld 9255 |
. . . . 5
|
| 30 | 4pos 9104 |
. . . . . . 7
| |
| 31 | 21, 30 | pm3.2i 272 |
. . . . . 6
|
| 32 | 31 | a1i 9 |
. . . . 5
|
| 33 | lemul1 8637 |
. . . . 5
| |
| 34 | 27, 29, 32, 33 | syl3anc 1249 |
. . . 4
|
| 35 | 25 | recnd 8072 |
. . . . . 6
|
| 36 | 1cnd 8059 |
. . . . . 6
| |
| 37 | 6, 11, 24 | divcanap1d 8835 |
. . . . . . 7
|
| 38 | 10 | mullidi 8046 |
. . . . . . . 8
|
| 39 | 38 | a1i 9 |
. . . . . . 7
|
| 40 | 37, 39 | oveq12d 5943 |
. . . . . 6
|
| 41 | 35, 11, 36, 40 | joinlmuladdmuld 8071 |
. . . . 5
|
| 42 | 2t2e4 9162 |
. . . . . . . . 9
| |
| 43 | 42 | eqcomi 2200 |
. . . . . . . 8
|
| 44 | 43 | a1i 9 |
. . . . . . 7
|
| 45 | 44 | oveq2d 5941 |
. . . . . 6
|
| 46 | 29 | recnd 8072 |
. . . . . . 7
|
| 47 | mulass 8027 |
. . . . . . . 8
| |
| 48 | 47 | eqcomd 2202 |
. . . . . . 7
|
| 49 | 46, 13, 13, 48 | syl3anc 1249 |
. . . . . 6
|
| 50 | 28 | recnd 8072 |
. . . . . . . . 9
|
| 51 | 2ap0 9100 |
. . . . . . . . . 10
| |
| 52 | 51 | a1i 9 |
. . . . . . . . 9
|
| 53 | 50, 13, 52 | divcanap1d 8835 |
. . . . . . . 8
|
| 54 | 53 | oveq1d 5940 |
. . . . . . 7
|
| 55 | 6, 36, 13 | subdird 8458 |
. . . . . . 7
|
| 56 | 12 | mullidi 8046 |
. . . . . . . . 9
|
| 57 | 56 | a1i 9 |
. . . . . . . 8
|
| 58 | 57 | oveq2d 5941 |
. . . . . . 7
|
| 59 | 54, 55, 58 | 3eqtrd 2233 |
. . . . . 6
|
| 60 | 45, 49, 59 | 3eqtrd 2233 |
. . . . 5
|
| 61 | 41, 60 | breq12d 4047 |
. . . 4
|
| 62 | 3, 22 | readdcld 8073 |
. . . . 5
|
| 63 | 2re 9077 |
. . . . . 6
| |
| 64 | 63 | a1i 9 |
. . . . 5
|
| 65 | 3, 64 | remulcld 8074 |
. . . . 5
|
| 66 | leaddsub 8482 |
. . . . . 6
| |
| 67 | 66 | bicomd 141 |
. . . . 5
|
| 68 | 62, 64, 65, 67 | syl3anc 1249 |
. . . 4
|
| 69 | 34, 61, 68 | 3bitrd 214 |
. . 3
|
| 70 | 69 | adantr 276 |
. 2
|
| 71 | 20, 70 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 |
| This theorem is referenced by: fldiv4p1lem1div2 10412 |
| Copyright terms: Public domain | W3C validator |