ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  div4p1lem1div2 Unicode version

Theorem div4p1lem1div2 9245
Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
div4p1lem1div2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )

Proof of Theorem div4p1lem1div2
StepHypRef Expression
1 6re 9071 . . . . . . 7  |-  6  e.  RR
21a1i 9 . . . . . 6  |-  ( N  e.  RR  ->  6  e.  RR )
3 id 19 . . . . . 6  |-  ( N  e.  RR  ->  N  e.  RR )
42, 3, 3leadd2d 8567 . . . . 5  |-  ( N  e.  RR  ->  (
6  <_  N  <->  ( N  +  6 )  <_ 
( N  +  N
) ) )
54biimpa 296 . . . 4  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  +  6 )  <_  ( N  +  N ) )
6 recn 8012 . . . . . 6  |-  ( N  e.  RR  ->  N  e.  CC )
76times2d 9235 . . . . 5  |-  ( N  e.  RR  ->  ( N  x.  2 )  =  ( N  +  N ) )
87adantr 276 . . . 4  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  x.  2 )  =  ( N  +  N ) )
95, 8breqtrrd 4061 . . 3  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( N  +  6 )  <_  ( N  x.  2 ) )
10 4cn 9068 . . . . . . . 8  |-  4  e.  CC
1110a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  e.  CC )
12 2cn 9061 . . . . . . . 8  |-  2  e.  CC
1312a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  2  e.  CC )
146, 11, 13addassd 8049 . . . . . 6  |-  ( N  e.  RR  ->  (
( N  +  4 )  +  2 )  =  ( N  +  ( 4  +  2 ) ) )
15 4p2e6 9134 . . . . . . 7  |-  ( 4  +  2 )  =  6
1615oveq2i 5933 . . . . . 6  |-  ( N  +  ( 4  +  2 ) )  =  ( N  +  6 )
1714, 16eqtrdi 2245 . . . . 5  |-  ( N  e.  RR  ->  (
( N  +  4 )  +  2 )  =  ( N  + 
6 ) )
1817breq1d 4043 . . . 4  |-  ( N  e.  RR  ->  (
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 )  <->  ( N  +  6 )  <_ 
( N  x.  2 ) ) )
1918adantr 276 . . 3  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( ( N  +  4 )  +  2 )  <_  ( N  x.  2 )  <-> 
( N  +  6 )  <_  ( N  x.  2 ) ) )
209, 19mpbird 167 . 2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) )
21 4re 9067 . . . . . . . 8  |-  4  e.  RR
2221a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  e.  RR )
23 4ap0 9089 . . . . . . . 8  |-  4 #  0
2423a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4 #  0 )
253, 22, 24redivclapd 8862 . . . . . 6  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  RR )
26 peano2re 8162 . . . . . 6  |-  ( ( N  /  4 )  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
2725, 26syl 14 . . . . 5  |-  ( N  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
28 peano2rem 8293 . . . . . 6  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
2928rehalfcld 9238 . . . . 5  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  RR )
30 4pos 9087 . . . . . . 7  |-  0  <  4
3121, 30pm3.2i 272 . . . . . 6  |-  ( 4  e.  RR  /\  0  <  4 )
3231a1i 9 . . . . 5  |-  ( N  e.  RR  ->  (
4  e.  RR  /\  0  <  4 ) )
33 lemul1 8620 . . . . 5  |-  ( ( ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR  /\  ( 4  e.  RR  /\  0  <  4 ) )  ->  ( (
( N  /  4
)  +  1 )  <_  ( ( N  -  1 )  / 
2 )  <->  ( (
( N  /  4
)  +  1 )  x.  4 )  <_ 
( ( ( N  -  1 )  / 
2 )  x.  4 ) ) )
3427, 29, 32, 33syl3anc 1249 . . . 4  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 )  <->  ( (
( N  /  4
)  +  1 )  x.  4 )  <_ 
( ( ( N  -  1 )  / 
2 )  x.  4 ) ) )
3525recnd 8055 . . . . . 6  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  CC )
36 1cnd 8042 . . . . . 6  |-  ( N  e.  RR  ->  1  e.  CC )
376, 11, 24divcanap1d 8818 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  /  4
)  x.  4 )  =  N )
3810mullidi 8029 . . . . . . . 8  |-  ( 1  x.  4 )  =  4
3938a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  (
1  x.  4 )  =  4 )
4037, 39oveq12d 5940 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  x.  4 )  +  ( 1  x.  4 ) )  =  ( N  + 
4 ) )
4135, 11, 36, 40joinlmuladdmuld 8054 . . . . 5  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  x.  4 )  =  ( N  + 
4 ) )
42 2t2e4 9145 . . . . . . . . 9  |-  ( 2  x.  2 )  =  4
4342eqcomi 2200 . . . . . . . 8  |-  4  =  ( 2  x.  2 )
4443a1i 9 . . . . . . 7  |-  ( N  e.  RR  ->  4  =  ( 2  x.  2 ) )
4544oveq2d 5938 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  4 )  =  ( ( ( N  -  1 )  /  2 )  x.  ( 2  x.  2 ) ) )
4629recnd 8055 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  CC )
47 mulass 8010 . . . . . . . 8  |-  ( ( ( ( N  - 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  2  e.  CC )  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( ( N  -  1 )  /  2 )  x.  ( 2  x.  2 ) ) )
4847eqcomd 2202 . . . . . . 7  |-  ( ( ( ( N  - 
1 )  /  2
)  e.  CC  /\  2  e.  CC  /\  2  e.  CC )  ->  (
( ( N  - 
1 )  /  2
)  x.  ( 2  x.  2 ) )  =  ( ( ( ( N  -  1 )  /  2 )  x.  2 )  x.  2 ) )
4946, 13, 13, 48syl3anc 1249 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  ( 2  x.  2 ) )  =  ( ( ( ( N  -  1 )  /  2 )  x.  2 )  x.  2 ) )
5028recnd 8055 . . . . . . . . 9  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  CC )
51 2ap0 9083 . . . . . . . . . 10  |-  2 #  0
5251a1i 9 . . . . . . . . 9  |-  ( N  e.  RR  ->  2 #  0 )
5350, 13, 52divcanap1d 8818 . . . . . . . 8  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  2 )  =  ( N  - 
1 ) )
5453oveq1d 5937 . . . . . . 7  |-  ( N  e.  RR  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( N  -  1 )  x.  2 ) )
556, 36, 13subdird 8441 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  -  1 )  x.  2 )  =  ( ( N  x.  2 )  -  ( 1  x.  2 ) ) )
5612mullidi 8029 . . . . . . . . 9  |-  ( 1  x.  2 )  =  2
5756a1i 9 . . . . . . . 8  |-  ( N  e.  RR  ->  (
1  x.  2 )  =  2 )
5857oveq2d 5938 . . . . . . 7  |-  ( N  e.  RR  ->  (
( N  x.  2 )  -  ( 1  x.  2 ) )  =  ( ( N  x.  2 )  - 
2 ) )
5954, 55, 583eqtrd 2233 . . . . . 6  |-  ( N  e.  RR  ->  (
( ( ( N  -  1 )  / 
2 )  x.  2 )  x.  2 )  =  ( ( N  x.  2 )  - 
2 ) )
6045, 49, 593eqtrd 2233 . . . . 5  |-  ( N  e.  RR  ->  (
( ( N  - 
1 )  /  2
)  x.  4 )  =  ( ( N  x.  2 )  - 
2 ) )
6141, 60breq12d 4046 . . . 4  |-  ( N  e.  RR  ->  (
( ( ( N  /  4 )  +  1 )  x.  4 )  <_  ( (
( N  -  1 )  /  2 )  x.  4 )  <->  ( N  +  4 )  <_ 
( ( N  x.  2 )  -  2 ) ) )
623, 22readdcld 8056 . . . . 5  |-  ( N  e.  RR  ->  ( N  +  4 )  e.  RR )
63 2re 9060 . . . . . 6  |-  2  e.  RR
6463a1i 9 . . . . 5  |-  ( N  e.  RR  ->  2  e.  RR )
653, 64remulcld 8057 . . . . 5  |-  ( N  e.  RR  ->  ( N  x.  2 )  e.  RR )
66 leaddsub 8465 . . . . . 6  |-  ( ( ( N  +  4 )  e.  RR  /\  2  e.  RR  /\  ( N  x.  2 )  e.  RR )  -> 
( ( ( N  +  4 )  +  2 )  <_  ( N  x.  2 )  <-> 
( N  +  4 )  <_  ( ( N  x.  2 )  -  2 ) ) )
6766bicomd 141 . . . . 5  |-  ( ( ( N  +  4 )  e.  RR  /\  2  e.  RR  /\  ( N  x.  2 )  e.  RR )  -> 
( ( N  + 
4 )  <_  (
( N  x.  2 )  -  2 )  <-> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) ) )
6862, 64, 65, 67syl3anc 1249 . . . 4  |-  ( N  e.  RR  ->  (
( N  +  4 )  <_  ( ( N  x.  2 )  -  2 )  <->  ( ( N  +  4 )  +  2 )  <_ 
( N  x.  2 ) ) )
6934, 61, 683bitrd 214 . . 3  |-  ( N  e.  RR  ->  (
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 )  <->  ( ( N  +  4 )  +  2 )  <_ 
( N  x.  2 ) ) )
7069adantr 276 . 2  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( ( N  /  4 )  +  1 )  <_  (
( N  -  1 )  /  2 )  <-> 
( ( N  + 
4 )  +  2 )  <_  ( N  x.  2 ) ) )
7120, 70mpbird 167 1  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197   # cap 8608    / cdiv 8699   2c2 9041   4c4 9043   6c6 9045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053
This theorem is referenced by:  fldiv4p1lem1div2  10395
  Copyright terms: Public domain W3C validator