| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > div4p1lem1div2 | Unicode version | ||
| Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.) |
| Ref | Expression |
|---|---|
| div4p1lem1div2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6re 9187 |
. . . . . . 7
| |
| 2 | 1 | a1i 9 |
. . . . . 6
|
| 3 | id 19 |
. . . . . 6
| |
| 4 | 2, 3, 3 | leadd2d 8683 |
. . . . 5
|
| 5 | 4 | biimpa 296 |
. . . 4
|
| 6 | recn 8128 |
. . . . . 6
| |
| 7 | 6 | times2d 9351 |
. . . . 5
|
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | 5, 8 | breqtrrd 4110 |
. . 3
|
| 10 | 4cn 9184 |
. . . . . . . 8
| |
| 11 | 10 | a1i 9 |
. . . . . . 7
|
| 12 | 2cn 9177 |
. . . . . . . 8
| |
| 13 | 12 | a1i 9 |
. . . . . . 7
|
| 14 | 6, 11, 13 | addassd 8165 |
. . . . . 6
|
| 15 | 4p2e6 9250 |
. . . . . . 7
| |
| 16 | 15 | oveq2i 6011 |
. . . . . 6
|
| 17 | 14, 16 | eqtrdi 2278 |
. . . . 5
|
| 18 | 17 | breq1d 4092 |
. . . 4
|
| 19 | 18 | adantr 276 |
. . 3
|
| 20 | 9, 19 | mpbird 167 |
. 2
|
| 21 | 4re 9183 |
. . . . . . . 8
| |
| 22 | 21 | a1i 9 |
. . . . . . 7
|
| 23 | 4ap0 9205 |
. . . . . . . 8
| |
| 24 | 23 | a1i 9 |
. . . . . . 7
|
| 25 | 3, 22, 24 | redivclapd 8978 |
. . . . . 6
|
| 26 | peano2re 8278 |
. . . . . 6
| |
| 27 | 25, 26 | syl 14 |
. . . . 5
|
| 28 | peano2rem 8409 |
. . . . . 6
| |
| 29 | 28 | rehalfcld 9354 |
. . . . 5
|
| 30 | 4pos 9203 |
. . . . . . 7
| |
| 31 | 21, 30 | pm3.2i 272 |
. . . . . 6
|
| 32 | 31 | a1i 9 |
. . . . 5
|
| 33 | lemul1 8736 |
. . . . 5
| |
| 34 | 27, 29, 32, 33 | syl3anc 1271 |
. . . 4
|
| 35 | 25 | recnd 8171 |
. . . . . 6
|
| 36 | 1cnd 8158 |
. . . . . 6
| |
| 37 | 6, 11, 24 | divcanap1d 8934 |
. . . . . . 7
|
| 38 | 10 | mullidi 8145 |
. . . . . . . 8
|
| 39 | 38 | a1i 9 |
. . . . . . 7
|
| 40 | 37, 39 | oveq12d 6018 |
. . . . . 6
|
| 41 | 35, 11, 36, 40 | joinlmuladdmuld 8170 |
. . . . 5
|
| 42 | 2t2e4 9261 |
. . . . . . . . 9
| |
| 43 | 42 | eqcomi 2233 |
. . . . . . . 8
|
| 44 | 43 | a1i 9 |
. . . . . . 7
|
| 45 | 44 | oveq2d 6016 |
. . . . . 6
|
| 46 | 29 | recnd 8171 |
. . . . . . 7
|
| 47 | mulass 8126 |
. . . . . . . 8
| |
| 48 | 47 | eqcomd 2235 |
. . . . . . 7
|
| 49 | 46, 13, 13, 48 | syl3anc 1271 |
. . . . . 6
|
| 50 | 28 | recnd 8171 |
. . . . . . . . 9
|
| 51 | 2ap0 9199 |
. . . . . . . . . 10
| |
| 52 | 51 | a1i 9 |
. . . . . . . . 9
|
| 53 | 50, 13, 52 | divcanap1d 8934 |
. . . . . . . 8
|
| 54 | 53 | oveq1d 6015 |
. . . . . . 7
|
| 55 | 6, 36, 13 | subdird 8557 |
. . . . . . 7
|
| 56 | 12 | mullidi 8145 |
. . . . . . . . 9
|
| 57 | 56 | a1i 9 |
. . . . . . . 8
|
| 58 | 57 | oveq2d 6016 |
. . . . . . 7
|
| 59 | 54, 55, 58 | 3eqtrd 2266 |
. . . . . 6
|
| 60 | 45, 49, 59 | 3eqtrd 2266 |
. . . . 5
|
| 61 | 41, 60 | breq12d 4095 |
. . . 4
|
| 62 | 3, 22 | readdcld 8172 |
. . . . 5
|
| 63 | 2re 9176 |
. . . . . 6
| |
| 64 | 63 | a1i 9 |
. . . . 5
|
| 65 | 3, 64 | remulcld 8173 |
. . . . 5
|
| 66 | leaddsub 8581 |
. . . . . 6
| |
| 67 | 66 | bicomd 141 |
. . . . 5
|
| 68 | 62, 64, 65, 67 | syl3anc 1271 |
. . . 4
|
| 69 | 34, 61, 68 | 3bitrd 214 |
. . 3
|
| 70 | 69 | adantr 276 |
. 2
|
| 71 | 20, 70 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 |
| This theorem is referenced by: fldiv4p1lem1div2 10520 |
| Copyright terms: Public domain | W3C validator |